Search

Issue
Title
Authors
Potential use of radiation methods for diagnosing bone metastases of castration-resistant prostate cancer: a literature review
Karpova A.A., Sergeev N.I., Borisova O.A., Nikitin P.A., Fomin D.K., Solodkiy V.A.
Comparative role of radiological imaging methods in biochemical recurrence of prostate cancer
Rostovtseva T.M., Dolgushin M.B., Karalkina M.A., Koroid O.A., Sinitsyn V.E.
Capabilities of positron emission tomography/computed tomography in a comparative assessment of the effect of various targeted therapy options in patients with EGFR-mutated non-small-cell lung cancer
Strutynsky V.A., Sinitsyn V.E., Platonova O.E.
Precision low-dose brachytherapy of prostate cancer under PSMA-receptor molecular visualization
Sviridov P.V., Rumiantsev P.O., Degtyarev M.V., Serzhenko S.S., Sanin D.B., Styrov S.V., Agibalov D.Y., Korenev S.V.
Diagnostic capabilities of cardiac computed tomography in the preoperative diagnosis of hypertrophic cardiomyopathy
Dariy O.Y., Yurpolskaya L.A., Rychina I.E., Dorofeev A.V., Golukhova E.Z.
Mitral valve calcinosis as an important finding during heart examination
Filatova D.A., Mershina E.A., Plotnikova M.L., Lisitskaya M.V., Sinitsyn V.E.
CT angiography dataset with abdominal aorta segmentation
Kodenko M.R., Vasilev Y.A., Solovev A.V., Gatin D.V., Yasakova E.P., Guseva A.V., Reshetnikov R.V.
Comparison of the diagnostic accuracy of whole-body diffusion-weighted imaging and 18F-prostate-specific membrane antigen-1007 positron emission tomography combined with computed tomography for detecting bone metastases in prostate cancer
Gelezhe P.B., Reshetnikov R.V., Blokhin I.A., Kodenko M.R.
Fundamentals of dual-energy computed tomography and its emerging applications in bladder cancer
Masino F., Eusebi L., Montatore M., Muscatella G., Gifuni R., Ferrara V., Marcellini M., Guglielmi G.
Optimization of left ventricular lead implantation based on combined myocardial perfusion scintigraphy and computed tomography data
Mishkina A.I., Atabekov T.A., Sazonova S.I., Batalov R.E., Popov S.V., Zavadovsky K.V.
Diagnosis of intracranial hemorrhages based on brain computed tomography with artificial intelligence
Khoruzhaya A.N., Arzamasov K.M., Kodenko M.R., Kremneva E.I., Burenchev D.V.
The role of radiomics in diagnosing gastrointestinal stromal tumors: a review
Martirosyan E.A., Karmazanovsky G.G., Kondratyev E.V., Sokolova E.A., Nechaev V.A., Kuzmina E.S., Galkin V.N., Glotov A.V.
Unilateral pulmonary vein atresia: Difficulties of radiological diagnosis
Zharikova V.V., Nechaev V.A., Kulikova E.A., Yudin A.L.
Encapsulated necrotic pancreatitis
Kitavina S.I., Petrovichev V.S., Ermakov A.N., Ermakov N.A., Nikitin I.G.
Imaging techniques in diagnosing acute pulmonary thromboembolism
Oganesyan A.A., Sinitsyn V.E., Mershina E.A., Pershina E.S.
The role of computed tomography in the differential diagnosis of an intracardiac mass of the mitral valve: a case series
Onoyko M.V., Mershina E.A., Arakelyants A.A., Sinitsyn V.E.
Diagnosis of solitary eosinophilic granuloma by CT, MRI, and 18F-FDG PET/CT: two clinical cases
Gelezhe P.B., Bulanov D.V.
Comparative analysis of modifications of U-Net neuronal network architectures in medical image segmentation
Dostovalova A.M., Gorshenin A.K., Starichkova J.V., Arzamasov K.M.
Diagnosis of thoracic aortic aneurysms and pathological pulmonary trunk dilation using chest computed tomography and artificial intelligence: modern approaches and prospects (a review)
Solovev A.V., Sinitsyn V.E., Vladzymyrskyy A.V., Pamova A.P.
A case of spontaneous liver rupture and the role of imaging: from computed tomography to interventional treatment
Montatore M., Masino F., Muscatella G., Gifuni R., Tupputi R., Quinto F., Guglielmi G.
Detecting new lung cancer cases using artificial intelligence: clinical and economic evaluation of a retrospective analysis of computed tomography scans 2 years after the COVID-19 pandemic
Zukov R.A., Safontsev I.P., Klimenok M.P., Zabrodskaya T.E., Merkulova N.A., Chernina V.Y., Belyaev M.G., Goncharov M.Y., Omelyanovskiy V.V., Ulianova K.A., Soboleva E.A., Blokhina M.E., Nalivkina E.A., Gombolevskiy V.A.
Bone mineral density radiopaque templates for cone beam computed tomography and multidetector computed tomography
Hossain S.D., Petraikin A.V., Muraev A.A., Danaev A.B., Burenchev D.V., Dolgalev A.A., Vasilev Y.A., Sharova D.E., Ivanov S.Y.
Experience with artificial intelligence algorithms for the diagnosis of vertebral compression fractures based on computed tomography: from testing to practical evaluation
Artyukova Z.R., Petraikin A.V., Kudryavtsev N.D., Petryaykin F.A., Semenov D.S., Sharova D.E., Belaya Z.E., Vladzimirskyy A.V., Vasilev Y.A.
Idiopathic enterocolic intussusception: imaging findings in an abdominal emergency
Balzano R., Lattanzio F., Fascia G., Montatore M., Balbino M., Masino F., Mannatrizio D., Guglielmi G.
Virtual platform for computer simulation of radionuclide imaging in nuclear cardiology: Comparison with clinical data
Denisova N.V., Gurko M.A., Kolinko I.P., Ansheles A.A., Sergienko V.B.
Dual-energy computed tomography for head and neck cancer
Petrovichev V.S., Neklyudova M.V., Sinitsyn V.E., Nikitin I.G.
An unknown situs viscerum inversus totalis, accidentally discovered after computed tomography
Montatore M., Balbino M., Masino F., Ruggiero T., Guglielmi G.
Low-dose computed tomography in COVID-19: systematic review
Blokhin I.A., Rumyantsev D.А., Suchilova M.M., Gonchar A.P., Omelyanskaya O.V.
Emerging techniques in atherosclerosis imaging
Syed M.B., Fletcher A.J., Forsythe R.O., Kaczynski J., Newby D.E., Dweck M.R., R. van Beek E.J.
Opportunities to reduce the radiation exposure during computed tomography to assess the changes in the lungs in patients with COVID-19: use of adaptive statistical iterative reconstruction
Filatova D.A., Sinitsin V.E., Mershina E.A.
Exploring the possibilities of an artificial intelligence program in the diagnosis of macular diseases
Khabazova M.R., Ponomareva E.N., Loskutov I.A., Katalevskaya E.А., Sizov A.Y., Gabaraev G.М.
Anthropomorphic abdominal aortic phantoms for computed tomography angiography
Guseva A.V., Kodenko M.R.
Artificial intelligence in the diagnosis of thoracic aortic aneurysms in a retrospective chest computed tomography scan analysis
Solovev A.V., Sinitsyn V.E., Petraikin A.V., Vladzymyrskyy A.A., Reshetnikov R.V.
Volumetry versus linear diameter lung nodule measurement: an ultra-low-dose computed tomography lung cancer screening study
Suchilova M.M., Blokhin I.A., Aleshina O.O., Gombolevskiy V.A., Reshetnikov R.V., Bosin V.Y., Omelyanskaya O.V., Vladzymyrskyy A.V.
How does artificial intelligence effect on the assessment of lung damage in COVID-19 on chest CT scan?
Morozov S.P., Chernina V.Y., Andreychenko A.E., Vladzymyrskyy A.V., Mokienko O.А., Gombolevskiy V.A.
Classification of optical coherence tomography images using deep machine-learning methods
Arzamastsev A.A., Fabrikantov O.L., Kulagina E.V., Zenkova N.A.
Erratum in “Volumetry versus linear diameter lung nodule measurement: an ultra-low-dose computed tomography lung cancer screening study” (doi: 10.17816/DD117481)
Suchilova M.M., Blokhin I.A., Aleshina O.O., Gombolevskiy V.A., Reshetnikov R.V., Bosin V.Y., Omelyanskaya O.V.
Preoperative computed tomography in the planning of median resternotomy in children
Korochkina E.S., Khasanova K.A., Abramyan M.A., Bedin A.V.
Substantiation of a new approach to the criteria for assessing the radiation dose of patients during computed tomography
Matkevich E.I., Sinitsyn V.Е., Ivanov I.V.
Perforated Meckel’s diverticulum in a young male patient: a case report
Tupputi U., Carpagnano F.A., Carpentiere R., Guglielmi G.
Tissue sampling and histopathological limitations in esophageal cancer
Akhmedzyanova D.A., Yutsevich O.K., Reshetnikov R.V., Tashchyаn O.V., Pirogov S.S., Mazurova M.P., Volchenko N.N., Kamalov A.K., Shumskaya Y.F., Mnatsakanyan M.G.
Review of tissue-mimicking materials for anthropomorphic modeling of arterial vessels
Abyzova D.I., Kodenko M.R.
Abernethy malformation: A case report
Panyukova A.V., Sinitsyn V.E., Mershina E.A., Rucheva N.A.
“Superior Pectus Carinatum” (Currarino–Silverman Syndrome) in a 66-year-old woman: a case report
Mannatrizio D., Fascia G., Guglielmi G.
Changing of pulmonary artery diameter in accordance with severity of COVID-19 (assessment based on non-contrast computer tomography)
Aliev A.F., Kudryavtsev N.D., Petraikin A.V., Artyukova Z.R., Shkoda A.S., Morozov S.P.
Diagnostic accuracy of computed tomography for identifying hospitalizations for patients with COVID-19
Morozov S.P., Reshetnikov R.V., Gombolevskiy V.A., Ledikhova N.V., Blokhin I.A., Mokienko O.A.
“Rice bodies” symptoms on magnetic resonance imaging of the shoulder in a patient with rheumatoid arthritis
Ageeva S.F., Filatova D.A., Mershina E.A., Sinitsyn V.E.
Epidemiological analysis of pulmonary artery dilation prevalence in Moscow: automated computed tomography image analysis
Solovev A.V., Sinitsyn V.E., Sokolova M.V., Kudryavtsev N.D., Vladzymyrskyy A.A., Semenov D.S.
Computed tomography in the diagnosis of fever of unknown origin: A case report
Shumskaya Y.F., Kostikova N.V., Akhmedzyanova D.A., Suleymanova M.M., Fominykh E.V., Mnatsakanyan M.G., Reshetnikov R.V.
Radiation methods in the diagnosis of primary and recurrent malignant ovarian struma: A case report
Nudnov N.V., Ivashina S.V., Aksenova S.P.
Impact of body mass index on the reliability of the CT0–4 grading system: a comparison of computed tomography protocols
Blokhin I.A., Gonchar A.P., Kodenko M.R., Solovev A.V., Gombolevskiy V.A., Reshetnikov R.V.
Evaluation of geometric deviations in rapid prototyped three-dimensional models created from computed tomography data
Shirshin A.V., Zheleznyak I.S., Malakhovsky V.N., Kushnarev S.V., Gorina N.S.
The frequency and character of community-acquired pneumonia comparison before and during the COVID-19 epidemic in the multi-specialty hospital
Yaremenko S.A., Rucheva N.A., Zhuravlev K.N., Sinitsyn V.E.
Challenges and benefits of using texture analysis of computed tomography and magnetic resonance imaging scans in diagnosis of bladder cancer
Kovalenko A.A., Sinitsyn V.E., Petrovichev V.
Prospects of using computer vision technology to detect urinary stones and liver and kidney neoplasms on computed tomography images of the abdomen and retroperitoneal space
Vasilev Y.A., Vladzymyrskyy A.V., Arzamasov K.M., Shikhmuradov D.U., Pankratov A.V., Ulyanov I.V., Nechaev N.B.
Medical phantom of the knee joint for computed tomography studies
Belyakova E.D., Nasibullina A.A., Bulgakova J.V., Vlasova O.V., Grebennikova V.V., Omelyanskaya O.V., Petraikin A.V., Leonov D.V.
Postmortem radiology studies in global and national healthcare: literature analysis and perspectives of Russian specialists
Shchegolev A.I., Tumanova U.N.
The role of dual-energy computed tomography in the diagnosis of gout and other crystalline arthropathies: A review
Onoyko M.V., Mershina E.A., Georginova O.A., Plotnikova M.L., Panyukova A.V., Sinitsyn V.E.
Computer tomography of uro-lymphatic fistulas associated with renal colic
Gelezhe P.B., Goryacheva K.M.
Inter-observer variability between readers of CT images: all for one and one for all
Kulberg N.S., Reshetnikov R.V., Novik V.P., Elizarov A.B., Gusev M.A., Gombolevskiy V.A., Vladzymyrskyy A.V., Morozov S.P.
Chest computed tomography for outcome prediction in laboratory-confirmed COVID-19: A retrospective analysis of 38,051 cases
Morozov S.P., Chernina V.Y., Blokhin A.I., Gombolevskiy V.A.
Organizing follow-up care for patients with macular retinal pathologies using artificial intelligence systems
Chuprov A.D., Bolodurina I.P., Lositskiy A.O., Zhigalov A.Y.
Complex morphological and computed tomographic characteristics of vascularization of monochorionic diamniotic placentas with discordant weight of newborns
Frolova E.R., Tumanova U.N., Sakalo V.A., Gladkova K.A., Bychenko V.G., Shchegolev A.I.
Evaluation of fetal absorbed doses from computed tomography examinations of pregnant patients: A systematic review
Vodovatov A.V., Golchenko O.A., Mashchenko I.A., Alekseeva D.V., Chipiga L.A., Khutornoy I.V., Kozlova P.V., Trufanov G.E., Druzhinina P.S., Ryzhov S.A., Soldatov I.V.
Cardiac myxoma originating from mitral valve leaflet
Vishniakova M.V., Abramenko A.S., Vishniakova M.V., Shumakov D.V.
Long-term broncocele anamnesis, triggered by typical carcinoid
Prusakova K.V., Gavrilov P.V.
Application of machine learning methods and medical image processing in solving the problem of detecting stenoses of the middle cerebral artery according to computed tomographic angiography data
Solominov M.V., Pakhomov D.V., Zagriazkina T.A.
Frequency of various cardiac complications in children with repaired tetralogy of Fallot identified by computer tomography
Kabdullina A.M., Sinitsyn V.E., Rakhimzhanova R.I., Dautov T.B., Saduakassova A.B., Kaliyev B.B., Bastarbekova L.A., Moldakhanova Z.A.
Analysis of the diagnostic and economic impact of the combined artificial intelligence algorithm for analysis of 10 pathological findings on chest computed tomography
Chernina V.Y., Belyaev M.G., Silin A.Y., Avetisov I.O., Pyatnitskiy I.A., Petrash E.A., Basova M.V., Sinitsyn V.E., Omelyanovskiy V.V., Gombolevskiy V.A.
Unilateral isolated fracture of the pterygoid plate: a case report
Balzano R.F., Testini V., Cammarota A., Guglielmi G.
Improving aortic aneurysm detection with artificial intelligence based on chest computed tomography data
Solovev A.V., Vasilev Y.A., Sinitsyn V.E., Petraikin A.V., Vladzymyrskyy A.V., Shulkin I.M., Sharova D.E., Semenov D.S.
Diagnosis of pulmonary embolism in patients with viral pneumonia using multislice spiral computed tomographic angiography
Kalinina E.P., Belova I.B.
Computed tomography in the diagnosis of oncopathology in end-stage renal disease: A case report
Tanirkhanova E.Z., Zhussupbekova L.I., Turebekov D.K., Zhakeyeva B.K., Baimukanova T.T., Zhantugan A.
Coronavirus disease-2019: Changes in computed tomography radiation burden across Moscow medical facilities
Druzhinina U.V., Ryzhov S.A., Vodovatov A.V., Soldatov I.V., Lantukh Z.A., Mukhortova A.N., Lubencova Y.N.
1 - 74 of 74 Items

Search tips:

  • Search terms are case-insensitive
  • Common words are ignored
  • By default only articles containing all terms in the query are returned (i.e., AND is implied)
  • Combine multiple words with OR to find articles containing either term; e.g., education OR research
  • Use parentheses to create more complex queries; e.g., archive ((journal OR conference) NOT theses)
  • Search for an exact phrase by putting it in quotes; e.g., "open access publishing"
  • Exclude a word by prefixing it with - or NOT; e.g. online -politics or online NOT politics
  • Use * in a term as a wildcard to match any sequence of characters; e.g., soci* morality would match documents containing "sociological" or "societal"

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».