Challenges and benefits of using texture analysis of computed tomography and magnetic resonance imaging scans in diagnosis of bladder cancer
- Authors: Kovalenko A.A.1, Sinitsyn V.E.2,3, Petrovichev V.4
-
Affiliations:
- Central Clinical Hospital of the Management Affair
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
- Lomonosov Moscow State University
- National Medical Research Centre “Treatment and Rehabilitation Centre”
- Issue: Vol 5, No 4 (2024)
- Pages: 784-793
- Section: Reviews
- URL: https://bakhtiniada.ru/DD/article/view/309836
- DOI: https://doi.org/10.17816/DD633363
- ID: 309836
Cite item
Abstract
Radiomics and texture analysis is a new step in the evaluation of digital medical images using specialized software and quantitative assessment of signs invisible to the eye. The textural parameters obtained through mathematical transformations correlate with morphological, molecular, and genotypic characteristics of the examined area.
This article reviews scientific studies on challenges and benefits of using texture analysis in diagnosis of bladder cancer. The authors describe the practical value of this approach, and consider the challenges and potential of using it. Forty publications published between 2016 and 2024 were selected using keywords from PubMed and Google Scholar.
Multiple studies demonstrate high accuracy of radiomics in local staging of bladder cancer, morphologic assessment of the tumor, and prediction of long term clinical outcomes.
Therefore, texture analysis of medical images can provide additional information to diagnose bladder cancer in uncertain cases. Standardization of the method is currently one of the key issues to accelerate implementation of radiomics analysis in clinical practice.
Full Text
##article.viewOnOriginalSite##About the authors
Anastasia A. Kovalenko
Central Clinical Hospital of the Management Affair
Author for correspondence.
Email: nastua_kovalenko@mail.ru
ORCID iD: 0000-0001-8276-3594
SPIN-code: 6158-0090
Russian Federation, Moscow
Valentin E. Sinitsyn
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Lomonosov Moscow State University
Email: vsini@mail.ru
ORCID iD: 0000-0002-5649-2193
SPIN-code: 8449-6590
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Moscow; MoscowVictor Petrovichev
National Medical Research Centre “Treatment and Rehabilitation Centre”
Email: petrovi4ev@gmail.com
ORCID iD: 0000-0002-8391-2771
SPIN-code: 7730-7420
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowReferences
- Panebianco V, Narumi Y, Altun E, et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging Reporting And Data System). European Urology. 2018;74(3):294–306. doi: 10.1016/j.eururo.2018.04.029
- Wang Z, Shang Y, Luan T, et al. Evaluation of the value of the VI-RADS scoring system in assessing muscle infiltration by bladder cancer. Cancer Imaging. 2020;20(1):26. doi: 10.1186/s40644-020-00304-3
- Cumberbatch MGK, Foerster B, Catto JWF, et al. Repeat Transurethral Resection in Non muscle invasive Bladder Cancer: A Systematic Review. European Urology. 2018;73(6):925–933. doi: 10.1016/j.eururo.2018.02.014
- Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert Review of Precision Medicine and Drug Development. 2016;1(2):207–226. doi: 10.1080/23808993.2016.1164013
- van Timmeren JE, Cester D, Tanadini Lang S, et al. Radiomics in medical imaging »how to» guide and critical reflection. Insights Imaging. 2020;11:91. doi: 10.1186/s13244-020-00887-2
- Bologna M, Corino V, Mainardi L. Technical Note: Virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI radiomics of the brain. Medical Physics. 2019;46(11):5116–5123. doi: 10.1002/mp.13834
- Moradmand H, Aghamiri SMR, Ghaderi R. Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. Journal of Applied Clinical Medical Physics. 2020;21(1):179–190. doi: 10.1002/acm2.12795
- Shafiq ul Hassan M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Medical Physics. 2017;44(3):1050–1062. doi: 10.1002/mp.12123
- Li X, Ma Q, Tao C, et al. A CT-based radiomics nomogram for differentiation of small masses (< 4 cm) of renal oncocytoma from clear cell renal cell carcinoma. Abdom Radiol. 2021;46(11):5240–5249. doi: 10.1007/s00261-021-03213-6
- Chu LC, Park S, Soleimani S, et al. Classification of pancreatic cystic neoplasms using radiomic feature analysis is equivalent to an experienced academic radiologist: a step toward computer-augmented diagnostics for radiologists. Abdom Radiol. 2022;47(12):4139–4150. doi: 10.1007/s00261-022-03663-6
- Marusyk A, Janiszewska M, Polyak K. Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance. Cancer Cell. 2020;37(4):471–484. doi: 10.1016/j.ccell.2020.03.007
- Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. Journal of Nuclear Medicine. 2020;61(4):488–495. doi: 10.2967/jnumed.118.222893
- Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Phys. Med. Biol. 2016;61(13):R150. doi: 10.1088/0031-9155/61/13/R150
- Wang J, Shen L, Zhong H, et al. Radiomics features on radiotherapy treatment planning CT can predict patient survival in locally advanced rectal cancer patients. Scientific Reports. 2019;9:15346. doi: 10.1038/s41598-019-51629-4
- Oikonomou A, Khalvati F, Tyrrell PN, et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Scientific Reports. 2018;8:4003. doi: 10.1038/s41598-018-22357-y
- Horvat N, Veeraraghavan H, Khan M, et al. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology. 2018;287(3):833–843. doi: 10.1148/radiol.2018172300
- Xu S, Yao Q, Liu G, et al. Combining DWI radiomics features with transurethral resection promotes the differentiation between muscle invasive bladder cancer and non muscle invasive bladder cancer. European Radiology. 2020;30:1804–1812. doi: 10.1007/s00330-019-06484-2
- Xu X, Zhang X, Tian Q, et al. Quantitative Identification of Nonmuscle Invasive and Muscle Invasive Bladder Carcinomas: A Multiparametric MRI Radiomics Analysis. J. Magn. Reson. Imaging. 2019;49(5):1489–1498. doi: 10.1002/jmri.26327
- Wang H, Hu D, Yao H, et al. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. European Radiology. 2019;29(11):6182–6190. doi: 10.1007/s00330-019-06222-8
- Zhang X, Xu X, Tian Q, et al. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J. Magn. Reson. Imaging. 2017;46(5):1281–1288. doi: 10.1002/jmri.25669
- Zheng J, Kong J, Wu S, et al. Development of a noninvasive tool to preoperatively evaluate the muscular invasiveness of bladder cancer using a radiomics approach. Cancer. 2019;125(24):4388–4398. doi: 10.1002/cncr.32490
- Xu X, Liu Y, Zhang X, et al. Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps. Abdominal Radiology. 2017;42(7):1896–1905. doi: 10.1007/s00261-017-1079-6
- Lim CS, Tirumani S, van der Pol CB, et al. Use of Quantitative T2-Weighted and Apparent Diffusion Coefficient Texture Features of Bladder Cancer and Extravesical Fat for Local Tumor Staging After Transurethral Resection. American Journal of Roentgenology. 2019;212(5):1060–1069. doi: 10.2214/AJR.18.20718
- Razik A, Das CJ, Sharma R, et al. Utility of first order MRI-Texture analysis parameters in the prediction of histologic grade and muscle invasion in urinary bladder cancer: a preliminary study. British Journal of Radiology. 2021;94(1122). doi: 10.1259/bjr.20201114
- Cui Y, Sun Z, Liu X, et al. CT-based radiomics for the preoperative prediction of the muscle invasive status of bladder cancer and comparison to radiologists’ assessment. Clinical Radiology. 2022;77(6):e473–e482. doi: 10.1016/j.crad.2022.02.019
- Zhang R, Jia S, Zhai L, et al. Predicting preoperative muscle invasion status for bladder cancer using computed tomography based radiomics nomogram. BMC Medical Imaging. 2024;24:98. doi: 10.1186/s12880-024-01276-7
- Ren J, Gu H, Zhang N, et al. Preoperative CT-based radiomics for diagnosing muscle invasion of bladder cancer. Egyptian Journal of Radiology and Nuclear Medicine. 2023;54(131). doi: 10.1186/s43055-023-01044-7
- Jing Q, Yang L, Hu S, et al. Radiomics prediction of the pathological grade of bladder cancer based on multi-phase CT images. Research Square. 2022. doi: 10.21203/rs.3.rs2385545/v1
- Woźnicki P, Laqua FC, Messmer K, et al. Radiomics for the Prediction of Overall Survival in Patients with Bladder Cancer Prior to Radical Cystectomy. Cancers. 2022;14(18):4449. doi: 10.3390/cancers14184449
- Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting Recurrence and Progression in Individual Patients with Stage Ta T1 Bladder Cancer Using EORTC Risk Tables: A Combined Analysis of 2596 Patients from Seven EORTC Trials. European Urology. 2006;49(3):466–477. doi: 10.1016/j.eururo.2005.12.031
- Fernandez Gomez J, Madero R, Solsona E, et al. Predicting Nonmuscle Invasive Bladder Cancer Recurrence and Progression in Patients Treated With Bacillus Calmette Guerin: The CUETO Scoring Model. Journal of Urology. 2009;182(5):2195–2203. doi: 10.1016/j.juro.2009.07.016
- Zhang X, Wang Y, Zhang J, et al. Development of a MRI-Based Radiomics Nomogram for Prediction of Response of Patients With Muscle Invasive Bladder Cancer to Neoadjuvant Chemotherapy. Front. Oncol. 2022;12. doi: 10.3389/fonc.2022.878499
- Kimura K, Yoshida S, Tsuchiya J, et al. Usefulness of texture features of apparent diffusion coefficient maps in predicting chemoradiotherapy response in muscle invasive bladder cancer. European Radiology. 2022;32:671–679. doi: 10.1007/s00330-021-08110-6
- Cha KH, Hadjiiski L, Chan HP, et al. Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep Learning. Scientific Reports. 2017;7:8738. doi: 10.1038/s4159801709315w
- Cai Q, Huang Y, Ling J, et al. Radiomics nomogram for predicting disease free survival after partial resection or radical cystectomy in patients with bladder cancer. British Journal of Radiology. 2024;97(1153):201–209. doi: 10.1093/bjr/tqad010
- Ibrahim A, Primakov S, Beuque M, et al. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods. 2021;188:20–29. doi: 10.1016/j.ymeth.2020.05.022
- Wichtmann BD, Harder FN, Weiss K, et al. Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging. Investigative Radiology. 2023;58(3):199–208. doi: 10.1097/RLI.0000000000000921
- Park JE, Park SY, Kim HJ, et al. Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives. Korean J Radiol. 2019;20(7):1124–1137. doi: 10.3348/kjr.2018.0070
- Li Q, Bai H, Chen Y, et al. A Fully Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme. Scientific Reports. 2017;7:14331. doi: 10.1038/s41598017147537
- Foy JJ, Armato SG, Al Hallaq HA. Effects of variability in radiomics software packages on classifying patients with radiation pneumonitis. Journal of Medical Imaging. 2020;7(1):014504. doi: 10.1117/1.JMI.7.1.014504
Supplementary files
