Epidemiological analysis of pulmonary artery dilation prevalence in Moscow: automated computed tomography image analysis

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The state of health of the pulmonary system and its impact on the overall well-being of the individual is an important aspect of modern medicine. Despite continuous progress in diagnostics and technology, epidemiologic data on pulmonary trunk health at the population level in Russia remain understudied. In the context of this problem, the present study is an in-depth population-based analysis of the status of pulmonary trunk dilatation using modern technology and artificial intelligence [1].

Pulmonary trunk dilatation (≥29 mm) may be associated with various pathologies including arterial hypertension, chronic obstructive pulmonary disease, heart failure, and other diseases of the circulatory system [2].

AIM: The aim of the study was to assess the prevalence of pulmonary trunk dilatation in the Moscow population using artificial intelligence technologies.

MATERIALS AND METHODS: The study was conducted between September 2022 and February 2023 in the population of Moscow. A large amount of chest CT data was analyzed, including information on 134,218 patients (61,514 men and 72,704 women). Artificial intelligence technologies were used to automatically process this data.

RESULTS: The results show that 49,227 (36.7%) patients — 23,720 (38.6%) men and 25,507 (35.1%) women — had evidence of pulmonary trunk dilatation. The analysis shows gender and age differences in the incidence of the pathology. The distribution of pulmonary trunk dilatation in the population shows age dependence. The percentage of patients with signs of pulmonary trunk dilatation increases with age: from 18.1% in the group of young people to 62.2% in the group of elderly people.

CONCLUSIONS: The study provides the first epidemiological data on pulmonary trunk dilatation in Moscow and emphasizes the importance of further research in this area. The findings may serve as a basis for the development of effective diagnostic and treatment strategies, as well as for further research in the field of artificial intelligence in medicine.

About the authors

Alexander V. Solovev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Morozov Children's Municipal Clinical Hospital

Author for correspondence.
Email: atlantis.92@mail.ru
ORCID iD: 0000-0003-4485-2638
SPIN-code: 9654-4005

Врач-рентгенолог, врач-радиолог, младший научный сотрудник отдела инновационных технологий.

Russian Federation, Moscow; Moscow

Valentin E. Sinitsyn

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; City Clinical Hospital named after I.V. Davydovsky; Lomonosov Moscow State University

Email: vsini@mail.ru
ORCID iD: 0000-0002-5649-2193
SPIN-code: 8449-6590
Russian Federation, Moscow; Moscow; Moscow

Maria V. Sokolova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: SokolovaMV10@zdrav.mos.ru
ORCID iD: 0009-0005-3689-3810
Russian Federation, Moscow

Nikita D. Kudryavtsev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: KudryavtsevND@zdrav.mos.ru
ORCID iD: 0000-0003-4203-0630
SPIN-code: 1125-8637
Russian Federation, Moscow

Anton A. Vladzymyrskyy

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: VladzimirskijAV@zdrav.mos.ru
ORCID iD: 0000-0002-2990-7736
SPIN-code: 3602-7120
Russian Federation, Moscow

Dmitry S. Semenov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: SemenovDS4@zdrav.mos.ru
ORCID iD: 0000-0002-4293-2514
SPIN-code: 2278-7290
Russian Federation, Moscow

References

  1. Vasil'ev YuA, Vladzimirskii AV, editors. Computer Vision in Radiologic Diagnostics: the First Stage of the Moscow Experiment. Moscow: Izdatel'skie resheniya; 2023. (In Russ).
  2. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Resp J. 2015;46:903–975. doi: 10.1183/13993003.01032-2015

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».