利用锥形束和多层螺旋计算机断层扫描数据测定骨矿物质密度的X射线对比模板
- 作者: Hossain S.D.1, Petraikin A.V.2, Muraev A.A.1, Danaev A.B.3, Burenchev D.V.2, Dolgalev A.A.3, Vasilev Y.A.2, Sharova D.E.2, Ivanov S.Y.1,4
-
隶属关系:
- Peoples Friendship University of Russia
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
- Stavropol State Medical University
- The First Sechenov Moscow State Medical University (Sechenov University)
- 期: 卷 4, 编号 3 (2023)
- 页面: 292-305
- 栏目: 原创性科研成果
- URL: https://bakhtiniada.ru/DD/article/view/254070
- DOI: https://doi.org/10.17816/DD501771
- ID: 254070
如何引用文章
详细
论证。锥形束计算机断层扫描(cone beam computed tomography,CBCT)允许在颌面部各种操作的规划阶段进行诊断,特别是在牙种植入方面。这种方法的优点是空间分辨率高、辐射量低、便于研究。然而,它也有一个明显的缺点:无法确定以亨氏(Hounsfield Unit,HU)单位的颌骨密度。CBCT中的X射线密度是以Gray Value(GV)单位确定的。
该研究的目的是根据磷酸氢二钾(DHP)和β-磷酸三钙(β-TCP)开发一套具有特定X射线密度的X射线对比模板,研究在CBCT和多层螺旋计算机断层扫描(MSCT)上扫描模板的结果,确定用于估算HU下颌骨矿物质密度的交叉校验算法,并根据C.Mish进行分类。
材料和方法。使用DHP溶液、β-TCP悬浮液作为X射线对比模板。模板的0.25ml微量试管中DHP的浓度分别为:49.96、99.98、174.99、349.99、549.98mg/ml,β-TCP悬浮液中DHP的等效浓度为1506mg/ml。这些模板根据C.Mish分类模拟了骨密度类型。这些模板检验是在2个MSCT和4个CBCT上进行的。在“标准”MSCT1模式120kV、200mA上进行了交叉校验;对所获得的依赖关系进行了线性和二次近似。
结果。在工作过程中,我们分析了CBCT的GV和MSCT的HU与IPC给定值的关系。我们发现了测量值存在显著差异。相关斜率角度和曲线形状各不相同。交叉校验后,与MSCT1模式相比,重新计算的数值具有良好的可比性。交叉校验前测量值的中位数差异为160个相对单 位(HU、GV),重新计算后显著减少了10倍,为16个相对单位(p=0,000),可靠显示了CBCT的平均差异(30个相对单位)大于MSCT的平均差异(8个相对单位),p=0,024;采用曼-惠特尼U检验进行了比较。
结论。我们开发的X射线对比模板允许使CBCT和不同MSCT模式的密度测定指数标准化,交叉校验后的分散平均减少了10倍,这提供根据C.Mish对HU中的骨组织进行分类的可能性。.
关键词:锥形束计算机断层扫描;多层螺旋计算机断层扫描;交叉校验;骨矿物质密度;X射线密度;密度测定;牙种植入。
关键词
作者简介
Shazmim D. Hossain
Peoples Friendship University of Russia
Email: shazmim@mail.ru
ORCID iD: 0000-0002-5410-1849
Assistant Lecturer
俄罗斯联邦, MoscowAlexey V. Petraikin
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
编辑信件的主要联系方式.
Email: alexeypetraikin@gmail.com
ORCID iD: 0000-0003-1694-4682
SPIN 代码: 6193-1656
MD, Dr. Sci. (Med.), Assistant Professor, Chief Researcher
俄罗斯联邦, MoscowAlexandr A. Muraev
Peoples Friendship University of Russia
Email: muraev_aa@pfur.ru
ORCID iD: 0000-0003-3982-5512
SPIN 代码: 1431-5936
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, MoscowAslan B. Danaev
Stavropol State Medical University
Email: aslandanaev111@mail.ru
ORCID iD: 0000-0003-4754-3101
SPIN 代码: 7266-7722
Assistant Lecturer
俄罗斯联邦, StavropolDmitry V. Burenchev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: BurenchevDV@zdrav.mos.ru
ORCID iD: 0000-0003-2894-6255
SPIN 代码: 2411-3959
MD, Dr. Sci. (Med.), Chief Researcher
俄罗斯联邦, MoscowAlexander A. Dolgalev
Stavropol State Medical University
Email: dolgalev@dolgalev.pro
ORCID iD: 0000-0002-6352-6750
SPIN 代码: 5941-5771
MD, Dr. Sci. (Med.), Assistant Professor
俄罗斯联邦, StavropolYuriy A. Vasilev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: VasilevYA1@zdrav.mos.ru
ORCID iD: 0000-0002-0208-5218
SPIN 代码: 4458-5608
MD, Cand. Sci. (Med.)
俄罗斯联邦, MoscowDarya E. Sharova
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: SharovaDE@zdrav.mos.ru
ORCID iD: 0000-0001-5792-3912
SPIN 代码: 1811-7595
俄罗斯联邦, Moscow
Sergey Yu. Ivanov
Peoples Friendship University of Russia; The First Sechenov Moscow State Medical University (Sechenov University)
Email: syivanov@yandex.ru
ORCID iD: 0000-0001-5458-0192
SPIN 代码: 2607-2679
MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences
俄罗斯联邦, Moscow; Moscow参考
- Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46(552): 1016–1022. doi: 10.1259/0007-1285-46-552-1016
- Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77. doi: 10.11607/jomi.2014suppl.g1.4
- DenOtter TD, Schubert J. Hounsfield Unit. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
- Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26–35. doi: 10.1111/j.1600-0501.2004.01067.x
- Woelber JP, Fleiner J, Rau J, et al. Accuracy and usefulness of CBCT in periodontology: A systematic review of the literature. Int J Periodontics Restorative Dent. 2018;38(2):289–297. doi: 10.11607/prd.2751
- Song D, Shujaat S, de Faria Vasconcelos K, et al. Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects. BMC Med Imaging. 2021;21(1):23. doi: 10.1186/s12880-021-00557-9
- Savoldi F, Yon MJ, Kwok VM, et al. Accuracy of CBCT in the identification of mental, lingual, and retromolar foramina: A comparison with visual inspection of human dry mandibles. Int J Periodontics Restorative Dent. 2021;41(6):e277–e286. doi: 10.11607/prd.4770
- Levi C, Gray JE, McCullough EC, Hattery RR. The unreliability of CT numbers as absolute values. AJR Am J Roentgenol. 1982;139(3): 443–447. doi: 10.2214/ajr.139.3.443
- Petraikin AV, Skripnikova IA. Quantitative computed tomography, modern data. Review. Medical Imaging. 2021;25(4):134–146. (In Russ). doi: 10.24835/1607-0763-1049
- Ivanov DV, Kirillova IV, Kossovich LY, et al. Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bonemineral density using quantitative computed tomography. News Saratov University. 2020;20(2):205–219. (In Russ). doi: 10.18500/1816-9791-2020-20-2-205-219
- Petraikin AV, Smorchkova AK, Kudryavtsev ND, et al. Comparison of two asynchronous QCT methods. Medical Imaging. 2020;24(4): 108–118. (In Russ). doi: 10.24835/1607-0763-2020-4-108-118
- Witt RM, Cameron JR. Bone Standards. USAEC Progress Report No. COO-1422-42 US Atomic Energy Comission, Madison, Wisconsin; 1969.
- Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980;4(4):493–500. doi: 10.1097/00004728-198008000-00018
- Hubbell JH. Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. National Institute of Standards and Technology, Gaithersburg, MD; 1969. doi: 10.6028/NBS.NSRDS.29
- International Commission on Radiation Units and Measurements (ICRU). Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report.1989;(44):1–189.
- Nikolaev AE, Korkunova OA, Blokhin IA, et al. Calcification density oncomputed tomography depending on scanning parameters: Phantom study. (In Russ). Med Imaging. 2020;24(4):119–132. doi: 10.24835/1607-0763-2020-4-119-132
- Gaur A, Dhillon M, Puri N, et al. Questionable accuracy of CBCT in determining bone density: A comparative CBCT-CT in vitro study. Dent Med Probl. 2022;59(3):413–419. doi: 10.17219/dmp/143504
- Martinez C, de Molina C, Desco M, Abella M. Optimization of a calibration phantom for quantitative radiography. Med Phys. 2021;48(3):1039–1053. doi: 10.1002/mp.14638
- Hu Z, Wang T, Pan X, et al. Comparison of diagnosis of cracked tooth using contrast-enhanced CBCT and micro-CT. Dentomaxillofac Radiol. 2021;50(7):20210003. doi: 10.1259/dmfr.20210003
- Lehmann L, Alvarez R, Macovski A, et al. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8(5):659–667. doi: 10.1118/1.595025
- Chuang KS, Huang H. Comparison of four dual energy image decomposition methods. Physics Med Biol. 1988;33(4):455. doi: 10.1088/0031-9155/33/4/005
- Gingold EL, Hasegawa BH. Systematic bias in basis material decomposition applied to quantitative dual-energy X-ray imaging. Med Phys. 1992;19(1):25–33. doi: 10.1088/0031-9155/33/4/005
- Cardinal HN, Fenster A. An accurate method for direct dual-energy calibration and decomposition. Med Phys. 1990;17(3):327–341. doi: 10.1118/1.596512
- Jacobs R, Salmon B, Codari M, et al. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health. 2018;18(1):88. doi: 10.1186/s12903-018-0523-5
- Dolgalev AA, Danaev AB, Yusupov RD, et al. Objective assessment of measurement error in significant cone-beam computed tomography in dental practice. Med Alphabet. 2022;(7):65–68. (In Russ). doi: 10.33667/2078-5631-2022-7-65-68
- Cassetta M, Stefanelli LV, Di Carlo S, et al. The accuracy of CBCT in measuring jaws bone density. Eur Rev Med Pharmacol Sci. 2012;16(10):1425–1429.
- Harvey S, Patel S. Guidelines and template for reporting on CBCT scans. Br Dent J. 2020;228(1):15–18. doi: 10.1038/s41415-019-1115-8
- Cassetta M, Stefanelli LV, Pacifici A, et al. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin Implant Dent Relat Res. 2014;16(4):471–478. doi: 10.1111/cid.12027
- Parsa A, Ibrahim N, Hassan B, et al. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res. 2015;26(1):e1–7. doi: 10.1111/clr.12315
- Van Dessel J, Nicolielo LF, Huang Y, et al. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur J Oral Implantol. 2017;10(1):95–105.
- Dillenseger JP, Matern JF, Gros CI, et al. MSCT versus CBCT: Evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging. Eur Radiol. 2015;25(2):505–515. doi: 10.1007/s00330-014-3439-8
- Schegerer AA, Lechel U, Ritter M, et al. Dose and image quality of cone-beam computed tomography as compared with conventional multislice computed tomography in abdominal imaging. Invest Radiol. 2014;49(10):675–684. doi: 10.1097/RLI.0000000000000069
- Veldhoen S, Schöllchen M, Hanken H, et al. Performance of cone-beam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on Phantom and cadaver head scans. Eur Radiol. 2017;27(2):790–800. doi: 10.1007/s00330-016-4387-2
- Grunz JP, Weng AM, Gietzen CH, et al. Evaluation of ultra-high-resolution cone-beam CT prototype of twin robotic radiography system for cadaveric wrist imaging. Acad Radiol. 202;28(10):e314–e322. doi: 10.1016/j.acra.2020.06.018
- Medelnik J, Hertrich K, Steinhäuser-Andresen S, et al. Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: An in vitro study. J Orofac Orthop. 2011;72(4):261–278. doi: 10.1007/s00056-011-0032-5
- Elshenawy H, Aly W, Salah N, et al. Influence of small, midi, medium and large fields of view on accuracy of linear measurements in CBCT imaging: Diagnostic accuracy study. Open Access Maced J Med Sci. 2019;7(6):1037–1041. doi: 10.3889/oamjms.2019.232
补充文件
