开放存取 开放存取  受限制的访问 ##reader.subscriptionAccessGranted##  受限制的访问 订阅存取

卷 215, 编号 12 (2024)

Automorphisms of Du Val del Pezzo surfaces

Virin N.

摘要

We present a description for the automorphism groups of Du Val del Pezzo surfaces whose automorphism groups are infinite.Bibliography: 11 titles.
Matematicheskii Sbornik. 2024;215(12):3-29
pages 3-29 views

Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel

Gorbunov S.

摘要

We consider a family of linear operators diagonalized by the Hankel transform. We express explicitly the Fredholm determinants of these operators, as restricted to $L_2[0, R]$, so that the rate of their convergence as $R\to\infty$ can be found. We use the link between these determinants and the distribution of additive functionals in a determinantal point process with Bessel kernel and estimate the distance in the Kolmogorov–Smirnov metric between the distribution of these functionals and the Gaussian distribution. Bibliography: 27 titles.
Matematicheskii Sbornik. 2024;215(12):30-55
pages 30-55 views

Zeros of discriminants constructed from Hermite–Pade polynomials of an algebraic function and their relation to branch points

Komlov A., Palvelev R.

摘要

Let $f_\infty$ be the germ at $\infty$ of some algebraic function $f$ of degree $m+1$. Let $Q_{n,j}$, $j=0,…,m$, be the Hermite–Pade polynomials of the first type of order $n\in\mathbb N$ constructed from the tuple of germs $[1, f_ \infty, f_\infty^2,…,f_\infty^m]$. We study the asymptotic properties of discriminants constructed from the Hermite–Pade polynomials in question, that is, the discriminants $D_n(z)$ of the polynomials $Q_{n,m}(z)w^m+Q_{n,m-1}(z)w^{m-1}+…+Q_{n,0}(z)$. We find their weak asymptotics, as well as the asymptotic behaviour of their ratio with the polynomial $Q_{n,m}^{2m-2}$. In addition, we refine the weak asymptotic formulae for $D_n$ at branch points of the original algebraic function $f$ and apply the results obtained to the problem of finding branch points of $f$ numerically on the basis of the prescribed germ $f_\infty$, which is used in applied problems. Bibliography: 49 titles.
Matematicheskii Sbornik. 2024;215(12):56-88
pages 56-88 views

Strong asymptotics of the best rational approximation to the exponential function on a bounded interval

Magnus A., Meinguet J.

摘要

We apply recent findings of complex approximation theory to best rational approximation of degree $n$ to the function $\exp(-(n+\nu)x)$ on a finite interval $[0,c]$. We show that the error norm behaves like the $n$th power of the main approximation rate times the $\nu$th power of a secondary approximation rate. The computation of the first rate is a consequence of works of Gonchar, Rakhmanov and Stahl done in the 1980s; the complete asymptotic description was achieved by Aptekarev in the first years of the 21st century. The solution is given in terms of elliptic integrals of the third kind. Bibliography: 92 titles.
Matematicheskii Sbornik. 2024;215(12):89-147
pages 89-147 views

Realization of permutations of even degree by products of three fixed-point-free involutions

Malyshev F.

摘要

We consider representations of a permutation $\pi$ of degree $2n$, $n\geqslant3$, by a product of three so-called pairwise-cycle permutations, all of whose cycles have length $2$. This is a valid question for even permutations if $n$ is even and for odd permutations if $n$ is odd. We prove constructively that for $n\geqslant4$, $n\neq8$, such a representation holds for all permutations $\pi$ of the same parity as $n$, apart from four exceptional conjugacy classes. For $n=8$ there are five exceptional conjugacy classes, and for $n=3$ there is one such class. Bibliography: 32 titles.
Matematicheskii Sbornik. 2024;215(12):148-182
pages 148-182 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».