Strong asymptotics of the best rational approximation to the exponential function on a bounded interval
- Authors: Magnus A.P.1, Meinguet J.1
-
Affiliations:
- Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Issue: Vol 215, No 12 (2024)
- Pages: 89-147
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306668
- DOI: https://doi.org/10.4213/sm8815
- ID: 306668
Cite item
Abstract
About the authors
Alphonse Philippe Magnus
Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Email: alphonse.magnus@uclouvain.be
Jean Meinguet
Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
References
- Справочник по специальным функциям с формулами, графиками и математическими таблицами, ред. М. Абрамовиц, И. Стиган, Наука, М., 1979, 831 с.
- В. М. Адамян, Д. З. Аров, М. Г. Крейн, “Аналитические свойства пар Шмидта ганкелева оператора и обощенная задача Шура–Такаги”, Матем. сб., 86(128):1(9) (1971), 34–75
- N. Achyeser, “Verallgemeinerung einer Korkine–Zolotareffschen Minimum-Aufgabe”, Зап. Харьк. матем. о-ва, 13 (1936), 3–14
- Н. И. Ахиезер, Лекции по теории аппроксимации, 2-е изд., Наука, М., 1965, 407 с.
- Н. И. Ахиезер, Элементы теории эллиптических функций, 2-е изд., Наука, М., 1970, 304 с.
- А. И. Аптекарев, “Точные константы рациональных аппроксимаций аналитических функций”, Матем. сб., 193:1 (2002), 3–72
- Th. Bagby, “The modulus of a plane condenser”, J. Math. Mech., 17 (1967), 315–329
- Th. Bagby, “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104
- G. A. Baker, Jr., Essentials of Pade approximants, Academic Press, New York–London, 1975, xi+306 pp.
- L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407
- C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers, Internat. Ser. Pure Appl. Math., McGraw-Hill Book Co., New York, 1978, xiv+593 pp.
- А. Б. Богатырев, Экстремальные многочлены и римановы поверхности, МЦНМО, М., 2005, 173 с.
- C. de Boor, A practical guide to splines, Appl. Math. Sci., 27, Rev. ed., Springer-Verlag, New York, 2001, xviii+346 pp.
- C. de Boor, “B(asic)-spline basics”, Fundamental developments of computer-aided geometric modeling, Academic Press, London, 1993, 27–49
- J. M. Borwein, P. B. Borwein, Pi and the AGM. A study in analytic number theory and computational complexity, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Intersci. Publ., John Wiley & Sons, Inc., New York, 1987, xvi+414 pp.
- D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$”, J. Approx. Theory, 36:4 (1982), 317–320
- R. Bulirsch, “Numerical calculation of elliptic integrals and elliptic functions”, Numer. Math., 7 (1965), 78–90
- H. Burkhardt, W. F. Meyer, “Potentialtheorie (Theorie der Laplace–Poissonschen Differentialgleichung)”, Encyclopädie der mathematischen Wissenschaften, v. 2 A (Analysis), § 7.b, B. G. Teubner, Leipzig, 1899–1916, 464–503
- V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67
- P. F. Byrd, M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Grundlehren Math. Wiss., 67, 2nd rev. ed., Springer-Verlag, New York–Heidelberg, 1971, xvi+358 pp.
- A. J. Carpenter, A. Ruttan, R. S. Varga, “Extended numerical computations on the “1/9” conjecture in rational approximation theory”, Rational approximation and interpolation (Tampa, FL, 1983), Lecture Notes in Math., 1105, Springer-Verlag, Berlin, 1984, 383–411
- W. J. Cody, G. Meinardus, R. S. Varga, “Chebyshev rational approximations to $e^{-x}$ on $[0,+infty)$ and applications to heat-conduction problems”, J. Approx. Theory, 2 (1969), 50–65
- P. D. Dragnev, B. Fuglede, D. P. Hardin, E. B. Saff, N. Zorii, “Minimum Riesz energy problems for a condenser with touching plates”, Potential Anal., 44:3 (2016), 543–577
- K. A. Driver, N. M. Temme, “Zero and pole distribution of diagonal Pade approximants to the exponential function”, Quaest. Math., 22:1 (1999), 7–17
- V. Druskin, S. Güttel, L. Knizhnerman, “Near-optimal perfectly matched layers for indefinite Helmholtz problems”, SIAM Rev., 58:1 (2016), 90–116
- А. Эрдейи, Асимптотические разложения, Физматгиз, М., 1962, 128 с.
- L. Fox, I. B. Parker, Chebyshev polynomials in numerical analysis, Oxford Univ. Press, London–New York–Toronto, 1968, ix+205 pp.
- Д. Гайер, Лекции по теории аппроксимации в комплексной области, Мир, М., 1986, 216 с.
- T. Ganelius, “Degree of rational approximation”, Lectures on approximation and value distribution, Sem. Math. Sup., 79, Presses Univ. Montreal, Montreal, QC, 1982, 9–78
- А. А. Гончар, “О задачах Е. И. Золотарева, связанных с рациональными функциями”, Матем. сб., 78(120):4 (1969), 640–654
- А. А. Гончар, “Скорость рациональной аппроксимации и свойство однозначности аналитической функции в окрестности изолированной особой точки”, Матем. сб., 94(136):2(6) (1974), 265–282
- А. А. Гончар, “О скорости рациональной аппроксимации некоторых аналитических функций”, Матем. сб., 105(147):2 (1978), 147–163
- А. А. Гончар, “5.6. Рациональная аппроксимация аналитических функций”, Исследования по линейным операторам и теории функций, 99 нерешенных задач линейного и комплексного анализа, Зап. науч. сем. ЛОМИ, 81, Изд-во «Наука», Ленинград. отд., Л., 1978, 182–185
- A. A. Gonchar, “Rational approximation of analytic functions”, Problem 12.17 (Ch. 12. Approximations and capacities), Linear and complex analysis problem. Problem book 3. Part II, Lecture Notes in Math., 1574, Springer-Verlag, Berlin–Heidelberg, 1994, 73–176
- А. А. Гончар, Г. Лопес Лагомасино, “О теореме Маркова для многоточечных аппроксимаций Паде”, Матем. сб., 105(147):4 (1978), 512–524
- А. А. Гончар, Е. А. Рахманов, “Равновесные распределения и скорость рациональной аппроксимации аналитических функций”, Матем. сб., 134(176):3(11) (1987), 306–352
- A. A. Gončar, E. A. Rakhmanov, “On the rate of rational approximation of analytic functions”, Approximation and optimization (Havana, 1987), Lecture Notes in Math., 1354, Springer-Verlag, Berlin, 1988, 25–42
- L. Haine, “Geodesic flow on $operatorname{SO}(4)$ and Abelian surfaces”, Math. Ann., 263:4 (1983), 435–472
- P. Henrici, Applied and computational complex analysis, v. 3, Pure Appl. Math. (N. Y.), Discrete Fourier analysis–Cauchy integrals–construction of conformal maps–univalent functions, Wiley-Intersci. Publ., John Wiley & Sons, Inc., New York, 1986, xvi+637 pp.
- E. Hille, Analytic function theory, v. I, Ginn and Co., Boston, MA, 1959, xi+308 pp.
- Z. G. Ignatov, V. K. Kaishev, B-splines and linear combinations of uniform order statistics, MRC tech. summary rep. # 2817, Math. Res. Center Univ. Wisconsin–Madison, 1985, 23 pp.
- E. Янке, Ф. Эмде, Ф. Леш, Специальные функции, 3-е стер. изд., Наука, М., 1977, 342 с.
- M. Joye, J.-J. Quisquater, “Hessian elliptic curves and side-channel attacks”, Cryptographic hardware and embedded systems – CHES 2001 (Paris, 2001), Lecture Notes in Comput. Sci., 2162, Springer-Verlag, Berlin, 2001, 402–410
- M. Kac, P. van Moerbeke, “A complete solution of the periodic Toda problem”, Proc. Nat. Acad. Sci. U.S.A., 72:8 (1975), 2879–2880
- O. D. Kellogg, Foundations of potential theory, Grundlehren Math. Wiss., 31, J. Springer, Berlin, 1929, ix+334 pp.
- L. V. King, On the direct numerical calculation of elliptic functions and integrals, Cambridge Univ. Press, Cambridge, 1924, viii+42 pp.
- M. A. Komarov, “A note on rational approximations to $e^x$, constructed by Nemeth and Newman”, J. Approx. Theory, 240 (2019), 126–128
- G. Lemaître, “Calcul des integrales elliptiques”, Acad. Roy. Belgique. Bull. Cl. Sci. (5), 33 (1947), 200–211
- G. Lopez Lagomasino, “Survey of multipoint Pade approximation to Markov type meromorphic functions and asymptotic properties of the orthogonal polynomials generated by them”, Polynômes orthogonaux et applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1171, Springer-Verlag, Berlin, 1985, 309–316
- Г. Л. Лопес, “Об асимптотике отношения ортогональных многочленов и сходимости многоточечных аппроксимаций Паде”, Матем. сб., 128(170):2(10) (1985), 216–229
- G. Lopez, E. A. Rakhmanov, “Rational approximations, orthogonal polynomials and equilibrium distributions”, Orthogonal polynomials and their applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer-Verlag, Berlin, 1988, 125–157
- A. P. Magnus, “On the use of Caratheodory–Fejer method for investigating ‘1/9’ and similar constants”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, D. Reidel Publ. Co., Dordrecht, 1988, 105–132
- A. P. Magnus, “Asymptotics and super asymptotics for best rational approximation error norms to the exponential function (the ‘1/9’ problem) by the Caratheodory–Fejer's method”, Nonlinear methods and rational approximation, II (Wilrijk, 1993), Math. Appl., 296, Kluwer Acad. Publ., Dordrecht, 1994, 173–185
- A. P. Magnus, J. Meinguet, “The elliptic functions and integrals of the “1/9” problem”, Numer. Algorithms, 24:1-2 (2000), 117–139
- F. Marcellan, A. Martinez-Finkelshtein, “Guillermo Lopez Lagomasino: mathematical life”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 1–24
- A. Martinez-Finkelshtein, “Trajectories of quadratic differentials and approximations of exponents on the semiaxis”, Complex methods in approximation theory (Almeria, 1995), Monogr. Cienc. Tecnol., 2, Univ. Almeria, Serv. Publ., Almeria, 1997, 69–84
- A. Martinez-Finkelshtein, “Equilibrium problems of potential theory in the complex plane”, Orthogonal polynomials and special functions, Lecture Notes in Math., 1883, Springer-Verlag, Berlin, 2006, 79–117
- A. Martinez-Finkelshtein, E. A. Rakhmanov, “Do orthogonal polynomials dream of symmetric curves?”, Found. Comput. Math., 16:6 (2016), 1697–1736
- G. Meinardus, Approximation of functions: theory and numerical methods, Exp. transl. of the German ed., Springer Tracts Nat. Philos., 13, Springer-Verlag New York, Inc., New York, 1967, viii+198 pp.
- J. Meinguet, “A simplified presentation of the Adamjan–Arov–Krein approximation theory”, Computational aspects of complex analysis (Braunlage, 1982), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 102, D. Reidel Publ. Co., Dordrecht, 1983, 217–248
- J. Meinguet, “Once again: the Adamjan–Arov–Krein approximation theory”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, D. Reidel Publ. Co., Dordrecht, 1988, 77–91
- J. Meinguet, “An electrostatics approach to the determination of extremal measures”, Math. Phys. Anal. Geom., 3:4 (2000), 323–337
- J. Meinguet, V. Belevitch, “On the realizability of ladder filters”, IRE Trans. Circuit Theory, 5:4 (1958), 253–255
- L. M. Milne-Thomson, The calculus of finite differences, Macmillan & Co., Ltd., London, 1933, xxiii+558 pp.
- Z. Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1952, viii+396 pp.
- J. Nuttall, “Location of poles of Pade approximants to entire functions”, Rational approximation and interpolation (Tampa, FL, 1983), Lecture Notes in Math., 1105, Springer-Verlag, Berlin, 1984, 354–363
- NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp.
- С. Пашковский, Вычислительные применения многочленов и рядов Чебышева, Наука, М., 1983, 384 с.
- O. Perron, Die Lehre von den Kettenbrüchen, B. G. Teubner, Leipzig–Berlin, 1913, xiii+520 pp.
- E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239
- Е. А. Рахманов, “Теорема Гончара–Шталя o $rho^2$ и связанные с ней направления исследований по рациональным аппроксимациям аналитических функций”, Матем. сб., 207:9 (2016), 57–90
- Е. А. Рахманов, “Распределение нулей полиномов Эрмита–Паде в случае Анжелеско”, УМН, 73:3(441) (2018), 89–156
- E. B. Saff, “Logarithmic potential theory with applications to approximation theory”, Surv. Approx. Theory, 5 (2010), 165–200
- E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp.
- M. A. Snyder, Chebyshev methods in numerical approximation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966, x+114 pp.
- H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240
- H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251
- H. Stahl, “A note on three conjectures by Gonchar on rational approximation”, J. Approx. Theory, 50:1 (1987), 3–7
- H. Stahl, “Convergence of rational interpolants”, Bull. Belg. Math. Soc. Simon Stevin, 1996, Suppl., 11–32
- H. Stahl, Calculating rational best approximants on $(-infty,0]$, 3ièmes journees approximation 15–16 mai 2008, Lille, unpubl. manuscript
- H. Stahl, Th. Schmelzer, “An extension of the '1/9'-problem”, J. Comput. Appl. Math., 233:3 (2009), 821–834
- H. Stahl, L. Baratchart, M. Yattselev, AAK approximants to functions with branch points, Workshop ‘Approximation days 2012’ (Leuven, 2012)
- J.-P. Thiran, C. Detaille, “Chebyshev polynomials on circular arcs in the complex plane”, Progress in approximation theory, Academic Press, Inc., Boston, MA, 1991, 771–786
- J. Todd, “Applications of transformation theory: a legacy from Zolotarev (1847–1878)”, Approximation theory and spline functions (St. John's, NL, 1983), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 136, D. Reidel Publishing Co., Dordrecht, 1984, 207–245
- L. N. Trefethen, M. H. Gutknecht, “The Caratheodory–Fejer method for real rational approximation”, SIAM J. Numer. Anal., 20:2 (1983), 420–436
- L. N. Trefethen, “MATLAB programs for CF approximation”, Approximation theory V, Academic Press, Inc., Boston, MA, 1986, 599–602
- L. N. Trefethen, M. Javed, Central limit theorem, 2012
- M. Unser, A. Aldroubi, M. Eden, “On the asymptotic convergence of $B$-spline wavelets to Gabor functions”, IEEE Trans. Inform. Theory, 38:2 (1992), 864–872
- R. S. Varga, Scientific computation on mathematical problems and conjectures, CBMS-NSF Regional Conf. Ser. in Appl. Math., 60, SIAM, Philadelphia, PA, 1990, vi+122 pp.
- Дж. Л. Уолш, Интерполяция и аппроксимация рациональными функциями в комплексной области, ИЛ, М., 1961, 508 с.
- J. L. Walsh, The location of critical points of analytic and harmonic functions, Amer. Math. Soc. Colloq. Publ., 34, Amer. Math. Soc., New York, 1950, viii+384 pp.
- R. Wong, J.-M. Zhang, “Asymptotic expansions of the generalized Bessel polynomials”, J. Comput. Appl. Math., 85:1 (1997), 87–112
Supplementary files
