Zeros of discriminants constructed from Hermite–Pade polynomials of an algebraic function and their relation to branch points

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $f_\infty$ be the germ at $\infty$ of some algebraic function $f$ of degree $m+1$. Let $Q_{n,j}$, $j=0,…,m$, be the Hermite–Pade polynomials of the first type of order $n\in\mathbb N$ constructed from the tuple of germs $[1, f_ \infty, f_\infty^2,…,f_\infty^m]$. We study the asymptotic properties of discriminants constructed from the Hermite–Pade polynomials in question, that is, the discriminants $D_n(z)$ of the polynomials $Q_{n,m}(z)w^m+Q_{n,m-1}(z)w^{m-1}+…+Q_{n,0}(z)$. We find their weak asymptotics, as well as the asymptotic behaviour of their ratio with the polynomial $Q_{n,m}^{2m-2}$. In addition, we refine the weak asymptotic formulae for $D_n$ at branch points of the original algebraic function $f$ and apply the results obtained to the problem of finding branch points of $f$ numerically on the basis of the prescribed germ $f_\infty$, which is used in applied problems. Bibliography: 49 titles.

About the authors

Aleksandr Vladimirovich Komlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: komlov@mi-ras.ru
Candidate of physico-mathematical sciences, no status

Roman Vital'evich Palvelev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: palvelev@mi-ras.ru
Candidate of physico-mathematical sciences, no status

References

  1. А. И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”, УМН, 66:6(402) (2011), 37–122
  2. А. И. Аптекарев, В. А. Калягин, “Асимптотика корня $n$-й степени из полиномов совместной ортогональности и алгебраические функции”, Препринты ИПМ им. М. В. Келдыша, 1986, 60, 18 с.
  3. А. И. Аптекарев, А. Э. Койэлаарс, “Аппроксимации Эрмита–Паде и ансамбли совместно ортогональных многочленов”, УМН, 66:6(402) (2011), 123–190
  4. А. И. Аптекарев, Г. Лопес Лагомасино, А. Мартинес-Финкельштейн, “О системах Никишина с дискретными компонентами и слабой асимптотике многочленов совместной ортогональности”, УМН, 72:3(435) (2017), 3–64
  5. А. И. Аптекарев, В. Г. Лысов, “Системы марковских функций, генерируемые графами, и асимптотика их аппроксимаций Эрмита–Паде”, Матем. сб., 201:2 (2010), 29–78
  6. A. I. Aptekarev, D. N. Tulyakov, “Geometry of Hermite–Pade approximants for system of functions ${f,f^2}$ with three branch points”, Препринты ИПМ им. М. В. Келдыша, 2012, 77, 25 pp.
  7. А. И. Аптекарев, Д. Н. Туляков, “Абелев интеграл Наттолла на римановой поверхности кубического корня многочлена третьей степени”, Изв. РАН. Сер. матем., 80:6 (2016), 5–42
  8. A. I. Aptekarev, M. L. Yattselev, “Pade approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280
  9. В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Метод внутренних вариаций и существование $S$-компактов”, Аналитические и геометрические вопросы комплексного анализа, Сборник статей, Труды МИАН, 279, МАИК «Наука/Интерпериодика», М., 2012, 31–58
  10. Xuanhao Chang, E. O. Dobrolyubov, S. V. Krasnoshchekov, “Fundamental studies of vibrational resonance phenomena by multivalued resummation of the divergent Rayleigh–Schrödinger perturbation theory series: deciphering polyad structures of three $H_2{ }^{16}O$ isotopologues”, Phys. Chem. Chem. Phys., 24:11 (2022), 6655–6675
  11. Е. М. Чирка, “Потенциалы на компактной римановой поверхности”, Комплексный анализ, математическая физика и приложения, Сборник статей, Труды МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 287–319
  12. Е. М. Чирка, “Римановы поверхности”, Лекц. курсы НОЦ, 1, МИАН, М., 2006, 3–105
  13. E. O. Dobrolyubov, N. R. Ikonomov, L. A. Knizhnerman, S. P. Suetin, Rational Hermite–Pade approximants vs Pade approximants. Numerical results
  14. E. O. Dobrolyubov, I. V. Polyakov, D. V. Millionshchikov, S. V. Krasnoshchekov, “Vibrational resonance phenomena of the OCS isotopologues studied by resummation of high-order Rayleigh–Schrödinger perturbation theory”, J. Quant. Spectrosc. Radiat. Transf., 316 (2024), 108909, 13 pp.
  15. A. N. Duchko, A. D. Bykov, “Multivalued property of Rayleigh–Schrödinger perturbation series for vibrational energy levels of molecules”, Phys. Scr., 94:10 (2019), 105403, 13 pp.
  16. А. А. Гончар, Е. А. Рахманов, “О сходимости совместных аппроксимаций Паде для систем функций марковского типа”, Теория чисел, математический анализ и их приложения, Сборник статей. Посвящается академику Ивану Матвеевичу Виноградову к его девяностолетию, Тр. МИАН СССР, 157, 1981, 31–48
  17. А. А. Гончар, Е. А. Рахманов, В. Н. Сорокин, “Об аппроксимациях Эрмита–Паде для систем функций марковского типа”, Матем. сб., 188:5 (1997), 33–58
  18. P. Henrici, “An algorithm for analytic continuation”, SIAM J. Numer. Anal., 3:1 (1966), 67–78
  19. A. Katz, “The analytic structure of many-body perturbation theory”, Nuclear Phys., 29 (1962), 353–372
  20. Р. К. Ковачева, С. П. Суетин, “Распределение нулей полиномов Эрмита–Паде для системы из трех функций и конденсатор Наттолла”, Функциональные пространства и смежные вопросы анализа, Сборник статей. К 80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова, Труды МИАН, 284, МАИК «Наука/Интерпериодика», М., 2014, 176–199
  21. A. V. Komlov, “Polynomial Hermite–Pade $m$-system and reconstruction of the values of algebraic functions”, Extended abstracts fall 2019–spaces of analytic functions: approximation, interpolation, sampling, Trends Math. Res. Perspect. CRM Barc., 12, Birkhäuser/Springer, Cham, 2021, 113–121
  22. А. В. Комлов, “Полиномиальная $m$-система Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, Матем. сб., 212:12 (2021), 40–76
  23. А. В. Комлов, Н. Г. Кружилин, Р. В. Пальвелев, С. П. Суетин, “О сходимости квадратичных аппроксимаций Шафера”, УМН, 71:2(428) (2016), 205–206
  24. А. В. Комлов, Р. В. Пальвелев, С. П. Суетин, Е. М. Чирка, “Аппроксимации Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, УМН, 72:4(436) (2017), 95–130
  25. S. V. Krasnoshchekov, E. O. Dobrolyubov, M. A. Syzgantseva, R. V. Palvelev, “Rigorous vibrational Fermi resonance criterion revealed: two different approaches yield the same result”, Molec. Phys., 118:11 (2020), e1743887, 7 pp.
  26. С. М. Львовский, Принципы комплексного анализа, МЦНМО, М., 2017, 303 с.
  27. В. Г. Лысов, “Об аппроксимациях Эрмита–Паде для произведения двух логарифмов”, Препринты ИПМ им. М. В. Келдыша, 2017, 141, 24 с.
  28. В. Г. Лысов, “Сильная асимптотика аппроксимаций Эрмита–Паде для системы Никишина с весами Якоби”, Препринты ИПМ им. М. В. Келдыша, 2017, 85, 35 с.
  29. J. Nuttall, “Hermite–Pade approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240
  30. J. Nuttall, “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42:4 (1984), 299–386
  31. Е. А. Перевозникова, Е. А. Рахманов, Вариация равновесной энергии и $S$-свойство компактов минимальной емкости, Препринт, М., 1994
  32. В. В. Прасолов, Задачи и теоремы линейной алгебры, 2-е изд., Наука, М., 2008, 536 с.
  33. Е. А. Рахманов, “К асимптотике многочленов Эрмита–Паде для двух марковских функций”, Матем. сб., 202:1 (2011), 133–140
  34. Е. А. Рахманов, “Распределение нулей полиномов Эрмита–Паде в случае Анжелеско”, УМН, 73:3(441) (2018), 89–156
  35. Е. А. Рахманов, С. П. Суетин, “Распределение нулей полиномов Эрмита–Паде для пары функций, образующей систему Никишина”, Матем. сб., 204:9 (2013), 115–160
  36. T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp.
  37. A. V. Sergeev, D. Z. Goodson, “Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: application to anharmonic oscillators”, J. Phys. A, 31:18 (1998), 4301–4317
  38. A. V. Sergeev, D. Z. Goodson, “Singularities of Moller–Plesset energy functions”, J. Chem. Phys., 124:9 (2006), 094111, 11 pp.
  39. H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324
  40. H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338
  41. H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354
  42. H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204
  43. S. P. Suetin, Hermite–Pade polynomials and analytic continuation: new approach and some results
  44. S. P. Suetin, Maximum principle and asymptotic properties of Hermite–Pade polynomials
  45. С. П. Суетин, “Асимптотические свойства полиномов Эрмита–Паде и точки Каца”, УМН, 77:6(468) (2022), 203–204
  46. С. П. Суетин, “О существовании трехлистной поверхности Наттолла в некотором классе бесконечнозначных аналитических функций”, УМН, 74:2(446) (2019), 187–188
  47. С. П. Суетин, “О новом подходе к задаче о распределении нулей полиномов Эрмита–Паде для системы Никишина”, Комплексный анализ, математическая физика и приложения, Сборник статей, Труды МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 259–275
  48. С. П. Суетин, “О скалярных подходах к изучению предельного распределения нулей многочленов Эрмита–Паде для системы Никишина”, УМН (в печати)
  49. С. П. Суетин, “Принцип максимума и асимптотические свойства многочленов Эрмита–Паде”, УМН, 79:3(477) (2024), 181–182

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Komlov A.V., Palvelev R.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».