Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel
- Autores: Gorbunov S.M.1,2,3
-
Afiliações:
- Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Edição: Volume 215, Nº 12 (2024)
- Páginas: 30-55
- Seção: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306666
- DOI: https://doi.org/10.4213/sm10137
- ID: 306666
Citar
Resumo
Palavras-chave
Sobre autores
Sergei Gorbunov
Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Email: gorbunov.sm@phystech.edu
Bibliografia
- Zhigang Bao, Yukun He, Quantitative CLT for linear eigenvalue statistics of Wigner matricess
- E. L. Basor, Yang Chen, “A note on Wiener–Hopf determinants and the Borodin–Okounkov identity”, Integral Equations Operator Theory, 45:3 (2003), 301–308
- E. L. Basor, T. Ehrhardt, “Asymptotics of determinants of Bessel operators”, Comm. Math. Phys., 234:3 (2003), 491–516
- E. L. Basor, T. Ehrhardt, Determinant computations for some classes of Toeplitz–Hankel matrices
- E. L. Basor, T. Ehrhardt, H. Widom, On the determinant of a certain Wiener–Hopf + Hankel operator
- E. L. Basor, H. Widom, “On a Toeplitz determinant identity of Borodin and Okounkov”, Integral Equations Operator Theory, 37:4 (2000), 397–401
- S. Berezin, A. I. Bufetov, “On the rate of convergence in the central limit theorem for linear statistics of Gaussian, Laguerre, and Jacobi ensembles”, Pure Appl. Funct. Anal., 6:1 (2021), 57–99
- D. Betea, Correlations for symplectic and orthogonal Schur measures
- A. Böttcher, “On the determinant formulas by Borodin, Okounkov, Baik, Deift, and Rains”, Toeplitz matrices and singular integral equations, Oper. Theory Adv. Appl., 135, Birkhäuser Verlag, Basel, 2002, 91–99
- A. Böttcher, B. Silbermann, Analysis of Toeplitz operators, Springer Monogr. Math., 2nd ed., Springer-Verlag, Berlin, 2006, xiv+665 pp.
- A. Borodin, A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37:4 (2000), 386–396
- А. И. Буфетов, “Среднее значение мультипликативного функционала синус-процесса”, Функц. анализ и его прил., 58:2 (2024), 23–33
- A. I. Bufetov, The sine-process has excess one
- P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368
- T. Ehrhardt, “A generalization of Pincus' formula and Toeplitz operator determinants”, Arch. Math. (Basel), 80:3 (2003), 302–309
- В. Феллер, Введение в теорию вероятностей и ее приложения, т. 2, Мир, М., 1967, 752 с.
- И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, 4-е изд., Физматгиз, М., 1963, 1100 с.
- K. Johansson, “On random matrices from the compact classical groups”, Ann. of Math. (2), 145:3 (1997), 519–545
- J. P. Keating, F. Mezzadri, B. Singphu, “Rate of convergence of linear functions on the unitary group”, J. Phys. A, 44:3 (2011), 035204, 27 pp.
- G. Lambert, M. Ledoux, C. Webb, “Quantitative normal approximation of linear statistics of $beta$-ensembles”, Ann. Probab., 47:5 (2019), 2619–2685
- O. Macchi, “The coincidence approach to stochastic point processes”, Adv. in Appl. Probab., 7 (1975), 83–122
- B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp.
- B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, Amer. Math. Soc., Providence, RI, 2005, xxvi+466 pp.
- B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp.
- А. Б. Сошников, “Детерминантные случайные точечные поля”, УМН, 55:5(335) (2000), 107–160
- C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309
- H. Widom, “A trace formula for Wiener–Hopf operators”, J. Operator Theory, 8:2 (1982), 279–298
Arquivos suplementares
