К вопросу разработки систем подвеса на постоянных магнитах для транспортных систем
- Авторы: Ким К.К.1, Карпова И.М.1
-
Учреждения:
- Петербургский государственный университет путей сообщения Императора Александра I
- Выпуск: Том 8, № 4 (2022)
- Страницы: 91-106
- Раздел: Оригинальные статьи
- URL: https://bakhtiniada.ru/transj/article/view/126652
- DOI: https://doi.org/10.17816/transsyst20228491-106
- ID: 126652
Цитировать
Полный текст
Аннотация
Цель: выработать рекомендации по разработке оптимальных конструктивных схем систем из постоянных магнитов, предназначенных для создания силы подвеса.
Методы: электромагнитное взаимодействие в системе описывалось с помощью классической теории поля, использовался принцип суперпозиции, расчет сил выполнялся с помощью метода зеркальных отображений и квадратурных формул Чебышева.
Результаты: увеличение количества рядов магнитов с чередующейся полярностью приводит к возрастанию результирующей напряженности размагничивающего поля, а в случае без чередования полярностей наблюдается обратный эффект. Сила подвеса достигает максимума при определенном расстоянии между рядами из постоянных магнитов. Боковая сила в системе подвеса горизонтального типа достигает максимума при определенной величине поперечного смещения. Регулировка несущей способности подвеса изменением размеров поперечных сечений постоянных магнитов сопровождается увеличением расхода их магнитного материала. Наличие ферромагнитной шины значительно улучшает характеристики подвеса и благотворно влияет на устойчивость подвеса.
Заключение: целесообразно использование многорядных структур на путевом полотне и на экипаже с определенным шагом установки магнитных полос с чередующейся полярностью, причем на величину электромагнитных сил влияет расстояние между полосами. Выбор размеров поперечного сечения постоянных магнитов должен осуществляется с учетом конкретных требований к системе подвеса, принимая во внимание обратимость процесса перемагничивания.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Константин Константинович Ким
Петербургский государственный университет путей сообщения Императора Александра I
Автор, ответственный за переписку.
Email: kimkk@inbox.ru
ORCID iD: 0000-0001-7282-4429
SPIN-код: 3278-4938
доктор технических наук, профессор
Россия, Санкт-ПетербургИрина Михайловна Карпова
Петербургский государственный университет путей сообщения Императора Александра I
Email: legiero@mail.ru
ORCID iD: 0000-0002-1197-0753
SPIN-код: 7820-7708
кандидат технических наук, доцент
Россия, Санкт-ПетербургСписок литературы
- Ким К.К. Системы электродвижения с использованием магнитного подвеса и сверхпроводимости. – М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2007. – 360 с. [Kim KK. Sistemy elektrodvizheniya s ispol'zovaniem magnitnogo podvesa i sverhprovodimosti. Moscow: GOU “Uchebno-metodicheskij centr po obrazovaniyu na zheleznodorozhnom transporte”; 2007. 360 p. (In Russ.)].
- Магнитолевитационный транспорт: научные проблемы и технические решения / под ред. Ю.Ф. Антонова, А.А. Зайцева. – М.: ФИЗМАТЛИТ, 2015. – 612 с. [Zaitsev AA, Antonov YuF, editors. Magnitolevitacionnyj transport: nauchnye problemi i tekhnicheskie resheniya. Moscow: FIZMATLIT; 2015.612 р. (In Russ.)]. Ссылка активна на: 02.02.2019.Доступно по: https://b-ok.org/book/2910926/a2ce27
- Bins KJ, Lawrenson P. Analysis and computation of electric and magnetic problems. Oxford: Pergamon Press; 1963. 376 p.
- Демирчян К.С., Чечурин В.Л. Машинные расчеты электромагнитных полей. – М.: ВШ, 1986. – 240 с. [Demirchyan KS, Chechurin VL. Mashinnye raschety elektromagnitnyh polej. Moscow: VSh; 1986. 240 p. (In Russ.)].
- Flankl M, Wellerdieck T, Tüysüz A, Kolar JW. Scaling laws for electrodynamic suspension in high-speed transportation. IET Electric Power Applications. 2017;12(3):357-364. doi: 10.1049/iet-epa.2017.0480
- Chin JC, Gray JS, Jones SM, Berton JJ. Open-Source Conceptual Sizing Models for the Hyperloop Passenger Pod. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 5–9 January 2015. Kissimmee, Florida. doi: 10.2514/6.2015-1587
- Janzen R. Trans Pod Ultra-High-Speed Tube Transportation: Dynamics of Vehicles and Infrastructure. Procedia Engineering.2017;199:8-17. doi: 10.1016/j.proeng.2017.09.142
- Beach AE. The Pneumatic Tunnel Under Broadway, NY. Scientific American. 1870;22(10):154-156. doi: 10.1038/scientificamerican03051870-154
- Oettershagen P. Perpetual flight with a small solar-powered UAV: Flight results, performance analysis and model validation. 2016. IEEE Aerospace Conference, Big Sky, MT, 2016. doi: 10.1109/AERO.2016.7500855
- Evstaf’ev AM, Nikitin VV, Telichenko SA. Energy Converters for Hybrid Traction Power Systems Used in Electric Transport. Russ. Electr. Engin. 2020;91:77-81. doi: 10.3103/S1068371220020042
- Nikitin VV, Sychugov AN, Rolle IA, et al. Calculations of the Parameters and Simulation of the Operation of Nonlinear Surge Arresters for AC Rolling Stock. Russ. Electr. Engin. 2020;91:87-92. doi: 10.3103/S1068371220020078
- Valinsky OS, Evstaf’ev AM, Nikitin VV. The Effectiveness of Energy Exchange Processes in Traction Electric Drives with Onboard Capacitive Energy Storages. Russ. Electr. Engin.2018;89:566-570. doi: 10.3103/S1068371218100103
- Nikitin VV, Marikin AN, Tret’yakov AV. Generator cars with hybrid power plants. Russ. Electr. Engin. 2016;87:260-265. doi: 10.3103/S1068371216050138
- Baiko AV, Nikitin VV, Sereda EG. Autonomous power systems with synchronous generators and hydrogen energy sources. Russ. Electr. Engin.2015;86:479-484. doi: 10.3103/S1068371215080027
Дополнительные файлы
