Оn the issue of the development of permanent magnet suspension systems for transport systems
- Authors: Kim K.K.1, Karpova I.M.1
-
Affiliations:
- Emperor Alexander I St. Petersburg State Transport University
- Issue: Vol 8, No 4 (2022)
- Pages: 91-106
- Section: Original studies
- URL: https://bakhtiniada.ru/transj/article/view/126652
- DOI: https://doi.org/10.17816/transsyst20228491-106
- ID: 126652
Cite item
Full Text
Abstract
Aim: to develop recommendations for the development of optimal design schemes of permanent magnet systems designed to create a suspension force.
Methods: we described the electromagnetic interaction in the system using classical field theory, the principle of superposition was used, the forces were calculated using the method of mirror images and Chebyshev quadrature formulas.
Results: an increase of the number of rows of magnets with alternating polarity leads to an increase in the resulting strength of the demagnetizing field and there is the opposite effect in the case without alternating polarities. The suspension force reaches its maximum at a certain distance between the rows of permanent magnets. The side force reaches a maximum at a certain amount of transverse displacement in the horizontal suspension system. The control of the loading capacity of the suspension by changing the size of the cross sections of permanent magnets is accompanied by an increase their mass of the magnetic material. The presence of a ferromagnetic buss significantly improves the characteristics of the suspension and has a beneficial effect on the stability of the suspension.
Conclusion: it is advisable to use multi-row structures on the track and on the vehicle with a certain step of installing magnetic rows with alternating polarity and the distance between the rows affects the magnitude of electromagnetic forces. The choice of the cross-sectional dimensions of permanent magnets should be carried out taking into account the specific requirements for the suspension system, taking into account the reversibility of the remagnetization process.
Full Text
##article.viewOnOriginalSite##About the authors
Konstantin K. Kim
Emperor Alexander I St. Petersburg State Transport University
Author for correspondence.
Email: kimkk@inbox.ru
ORCID iD: 0000-0001-7282-4429
SPIN-code: 3278-4938
Doctor of Technical Sciences, Professor
Russian Federation, St. PetersburgIrina M. Karpova
Emperor Alexander I St. Petersburg State Transport University
Email: legiero@mail.ru
ORCID iD: 0000-0002-1197-0753
SPIN-code: 7820-7708
Candidate of Technical Sciences, Associate Professor
Russian Federation, St. PetersburgReferences
- Ким К.К. Системы электродвижения с использованием магнитного подвеса и сверхпроводимости. – М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2007. – 360 с. [Kim KK. Sistemy elektrodvizheniya s ispol'zovaniem magnitnogo podvesa i sverhprovodimosti. Moscow: GOU “Uchebno-metodicheskij centr po obrazovaniyu na zheleznodorozhnom transporte”; 2007. 360 p. (In Russ.)].
- Магнитолевитационный транспорт: научные проблемы и технические решения / под ред. Ю.Ф. Антонова, А.А. Зайцева. – М.: ФИЗМАТЛИТ, 2015. – 612 с. [Zaitsev AA, Antonov YuF, editors. Magnitolevitacionnyj transport: nauchnye problemi i tekhnicheskie resheniya. Moscow: FIZMATLIT; 2015.612 р. (In Russ.)]. Ссылка активна на: 02.02.2019.Доступно по: https://b-ok.org/book/2910926/a2ce27
- Bins KJ, Lawrenson P. Analysis and computation of electric and magnetic problems. Oxford: Pergamon Press; 1963. 376 p.
- Демирчян К.С., Чечурин В.Л. Машинные расчеты электромагнитных полей. – М.: ВШ, 1986. – 240 с. [Demirchyan KS, Chechurin VL. Mashinnye raschety elektromagnitnyh polej. Moscow: VSh; 1986. 240 p. (In Russ.)].
- Flankl M, Wellerdieck T, Tüysüz A, Kolar JW. Scaling laws for electrodynamic suspension in high-speed transportation. IET Electric Power Applications. 2017;12(3):357-364. doi: 10.1049/iet-epa.2017.0480
- Chin JC, Gray JS, Jones SM, Berton JJ. Open-Source Conceptual Sizing Models for the Hyperloop Passenger Pod. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 5–9 January 2015. Kissimmee, Florida. doi: 10.2514/6.2015-1587
- Janzen R. Trans Pod Ultra-High-Speed Tube Transportation: Dynamics of Vehicles and Infrastructure. Procedia Engineering.2017;199:8-17. doi: 10.1016/j.proeng.2017.09.142
- Beach AE. The Pneumatic Tunnel Under Broadway, NY. Scientific American. 1870;22(10):154-156. doi: 10.1038/scientificamerican03051870-154
- Oettershagen P. Perpetual flight with a small solar-powered UAV: Flight results, performance analysis and model validation. 2016. IEEE Aerospace Conference, Big Sky, MT, 2016. doi: 10.1109/AERO.2016.7500855
- Evstaf’ev AM, Nikitin VV, Telichenko SA. Energy Converters for Hybrid Traction Power Systems Used in Electric Transport. Russ. Electr. Engin. 2020;91:77-81. doi: 10.3103/S1068371220020042
- Nikitin VV, Sychugov AN, Rolle IA, et al. Calculations of the Parameters and Simulation of the Operation of Nonlinear Surge Arresters for AC Rolling Stock. Russ. Electr. Engin. 2020;91:87-92. doi: 10.3103/S1068371220020078
- Valinsky OS, Evstaf’ev AM, Nikitin VV. The Effectiveness of Energy Exchange Processes in Traction Electric Drives with Onboard Capacitive Energy Storages. Russ. Electr. Engin.2018;89:566-570. doi: 10.3103/S1068371218100103
- Nikitin VV, Marikin AN, Tret’yakov AV. Generator cars with hybrid power plants. Russ. Electr. Engin. 2016;87:260-265. doi: 10.3103/S1068371216050138
- Baiko AV, Nikitin VV, Sereda EG. Autonomous power systems with synchronous generators and hydrogen energy sources. Russ. Electr. Engin.2015;86:479-484. doi: 10.3103/S1068371215080027
Supplementary files
