Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 33, Nº 4 (2025)

Capa

Edição completa

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Articles

Namuaiv Lamprophyre Pipe in the Khibina Massif: Mechanism of Formation and Implications for the Nature of the Mantle Source of Late-Stage Magmatism in the Kola Alkaline Province

Shaikhutdinova D., Sazonova L., Lebedeva N., Nosova A., Kargin A., Arzamastsev A., Kovach V.

Resumo

This study presents petrographic, major and trace-element, and Sr-Nd isotopic data for rocks from the Namuaiv explosion pipe, which intrudes the Khibina massif in the Kola Alkaline Province (KAP). These rocks record the late stage magmatic event in the KAP’s evolution. The results provide insights into the formation mechanisms of alkaline-ultramafic explosion pipes and constrain the nature of the mantle source during the province’s late magmatic stages. The pipe’s formation involved two distinct lamprophyric magmas—aillikite and monchiquite—as well as associated hydrothermal processes. The initial aillikite magma pulse underwent fluid fragmentation, whereas the subsequent monchiquite magma produced a hybrid rock – monchiquite breccia with aillikite magmaclasts. The fluid phases produced during explosive emplacement of aillikite formed a breccia with a natrolite-rich matrix. Some magmaclasts that were not incorporated into the monchiquite matrix were instead cemented into hydrothermal natrolite breccias. Geochemical and isotopic contrasts between early pre-Khibina lamprophyre dikes (Terskiy Coast)—coeval with alkaline-ultramafic carbonatite massifs—and later dikes and pipes (Khibina massif) suggest a shift in the composition of carbonate-bearing metasomatic assemblages in the mantle source. Early melts involved K-Na amphibole, but this metasomatic phase was exhausted during large-scale melting, leading to source depletion. Late-stage melts were instead derived from a phlogopite-bearing source, formed by metasomatic overprinting of potassium-rich melts generated by incongruent amphibole melting. K-Na amphibole was involved in the generationof the early melts, but this metasomatic phase was exhausted during large-scale melting, leading to sourcedepletion. Instead, late stage melts were derived from a phlogopite-bearing source formed by metasomaticoverprinting of the early depleted source. The metasomatic agent was potassium-rich melts derived fromincongruent melting of K-Na amphibole.

Petrologiâ. 2025;33(4):3-30
pages 3-30 views

Coexisting Baddeleyite and Zircon in Early Eocene Andesites of the Sikhote Alin: U-Pb Geochronology, Trace-Element Features, and Petrological and Tectonic Implications

Rodionov N., Surin T., Belyatsky B., Medvedev V., Stepanova A., Samsonov A.

Resumo

Relatively large crystals of baddeleyite (up to 100 μm) and zircon (up to 400 μm) were found in Cenozoic subalkaline andesites in the north of Sikhote-Alin. The reasons for such a rare association of Zr minerals for volcanics are discussed based on the petrological characteristics of andesites, U-Pb isotope dating and the results of studying the contents of trace elements in baddeleyite and zircon. Andesites contain rare clinopyroxene phenocrysts, the crystallization of which occurred in the temperature range of 1090–1150°C. The fine-grained matrix is composed of pyroxene, plagioclase, hornblende, ilmenite and acid domains, which consist of K-Na feldspars, quartz and acid glass and were formed at T = 926°C. Accessory baddeleyite and zircon are confined to acid domains. U-Pb age of baddeleyite 52.7 ± 1.1 Ma (MSWD = 2.6) can be used as a preliminary estimate of the crystallization age of andesite melts. Age values 206Pb*/238U of zircon are in a wide range from 46 to 56 Ma. The youngest age values (46–49 Ma) probably reflect a partial disturbance of the isotope system caused by high contents of U (up to 1.3 wt.%) and Th (up to 3.8 wt.%). Baddeleyite has a decrease in the concentrations of Hf (from 7742 to 2869 μg/g), Y and heavy REE, which could be associated with its crystallization in competition with amphibole. Deep negative Eu anomalies in baddeleyite and zircon suggest their growth simultaneously with feldspars. High concentrations of heavy REE, U and Th in zircon indicate its crystallization from enriched residual melts. The zircon crystallization temperature estimated using the Ti-in-zircon geothermometer (from 800 to 990°C) is comparable with temperature estimates for acid domains. Thus, the baddeleyite and zircon compositions suggest their crystallization at late stages of melt evolution, which could have occurred in an intermediate magmatic chamber. The studied Early Eocene andesites in the magmatic history of Sikhote-Alin occupy the period between the preceding Paleocene-Early Eocene A-type rhyolites (61–53 Ma) and the subsequent Eocene–Miocene basalts (40–20 Ma). This period is associated with the extension of the lithosphere due to the rupture of the continuity of the submerged oceanic plate and the opening of the “mantle windowˮ, and the studied early Eocene andesites probably mark the peak of this tectonic event.

Petrologiâ. 2025;33(4):31-55
pages 31-55 views

Dynamic component of pressure during metamorphism in a thrust zone

Baltybaev S., Vivdich E., Polyansky O., Sverdlova V.

Resumo

In the southeastern fragment of the Raahe-Ladoga suture zone in Russia, within the Meyeri tectonic zone, increased pressures (“overpressure”) were revealed, caused by structural-metamorphic transformations of rocks during collisional interaction of allochthonous and autochthonous blocks. It is assumed that tectonic interaction of the rigid crustal block of the Archean basement of the Karelian craton (autochthon) and the Proterozoic granulite block of the Svecofennian belt (allochthon) controls the conditions for the formation of superlithostatic pressure anomalies. Methods of mineral geobarometry and numerical thermomechanical modeling in the rocks of the thrust zone recorded pressures up to 9–11 kbar, while lithostatic pressure not exceeding 4–6 kbar. The obtained results allow us to consider that the nature of the local superlithostatic pressure up to 7–9 kbar, established by mineral geobarometers and numerical thermomechanical modeling, can be explained by the tectonic interaction of blocks with heterogeneous physical and mechanical properties, and not reflect the error of the applied mineral geobarometry instruments.

Petrologiâ. 2025;33(4):56-84
pages 56-84 views

HYBRID METAANDESITES OF KHANGAR VOLCANO, SREDINNY RANGE, KAMCHATKA: PRODUCT OF INTERACTION BETWEEN BASALTIC MAGMA AND BASEMENT GRANITOIDS?

Tolstykh M., Babansky A., Pevzner M., Kostitsyn Y., Kononkova N., Levitskaya L., Plechova A.

Resumo

Unique rocks were found in the southern part of the Khangar caldera at the exposure of basement granodiorites. Their bulk composition corresponds to high-magnesia andesite (SiO2 57–63 wt %, MgO 4–8 wt %, K2O 1.4–2 wt %). The rocks consist of quartz, oligoclase, and olivine henocrysts and a propylitic mineral assemblage (albite, calcite, chlorite, and epidote). The large phenocrysts are similar in composition to granodiorite minerals (oligoclase An22–28, quartz, and biotite). The olivine phenocrysts contain melt inclusions of basaltic composition (SiO2 45–48 wt %, MgO 7–10 wt %) with high K2O content (up to 1.5 wt %). We supposed that these rocks were produced by interaction between basaltic melt and silicic intrusive material.

Petrologiâ. 2025;33(4):85-111
pages 85-111 views

BASALT MELTING IN DRY AND WET SYSTEMS: THERMODYNAMIC MODELING, PARAMETERIZATION, AND COMPARISON WITH EXPERIMENTAL DATA

Sapegina A., Perchuk A.

Resumo

Metabasite melting is a large-scale geological process that contributes to the formation of felsic volcanics and, to a greater extent, tonalite-trondhjemite-granodiorite (TTG) complexes, which make up a significant part of ancient continental crust. Based on the results of phase equilibrium modelling using the Perple_X software package, melting parameterisation was performed for three compositions: anhydrous mid-ocean ridge basalt (MORB), MORB-H2O (2.78 wt % H2O) and hydrated basalt (AOC, altered oceanic crust, 2.78 wt % H2O) for temperatures of 500–1600°С and pressures of 0.0001–3 GPa. The obtained expressions are in good agreement with the few experimental data and show that for hydrous compositions (MORB-H2O and AOC) there is a sharp increase in melt volume (up to 20 vol %) in the first 20–30°C after passing the water solidus temperature, the subsequent increase in temperature leads to a more restrained increase in the degree of melting. Modelling has shown that near-solidus melts in hydrous systems have rhyolitic and trachydacite compositions. A further increase in the degree of melting leads to a decrease in SiO₂ and alkaline elements and an increase in CaO, MgO and FeO. The change in volume and composition of the melt is considered in the context of peritectic reactions, as well as changes in H2O content. Application of the melting parameterisation to metabasalts from subducting slabs in the Cascadia and Central Aleutian subduction hot zones has revealed different degrees of melting of these rocks along the corresponding geotherms; the products of such melting are adakite magmas. The proposed parameterisation of rock melting can be used to analyse the mechanisms of felsic rock formation in different geodynamic settings and can be integrated into existing petrological and petrological-thermomechanical models.

Petrologiâ. 2025;33(4):112-130
pages 112-130 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».