Namuaiv Lamprophyre Pipe in the Khibina Massif: Mechanism of Formation and Implications for the Nature of the Mantle Source of Late-Stage Magmatism in the Kola Alkaline Province
- Authors: Shaikhutdinova D.R.1,2, Sazonova L.V.1,2, Lebedeva N.M.1, Nosova A.A.1, Kargin A.V.1, Arzamastsev A.A.3, Kovach V.P.3
-
Affiliations:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Institute of Precambrian Geology and Geochronology Russian Academy of Sciences
- Issue: Vol 33, No 4 (2025)
- Pages: 3-30
- Section: Articles
- URL: https://bakhtiniada.ru/0869-5903/article/view/305350
- DOI: https://doi.org/10.31857/S0869590325040019
- EDN: https://elibrary.ru/svznco
- ID: 305350
Cite item
Abstract
This study presents petrographic, major and trace-element, and Sr-Nd isotopic data for rocks from the Namuaiv explosion pipe, which intrudes the Khibina massif in the Kola Alkaline Province (KAP). These rocks record the late stage magmatic event in the KAP’s evolution. The results provide insights into the formation mechanisms of alkaline-ultramafic explosion pipes and constrain the nature of the mantle source during the province’s late magmatic stages. The pipe’s formation involved two distinct lamprophyric magmas—aillikite and monchiquite—as well as associated hydrothermal processes. The initial aillikite magma pulse underwent fluid fragmentation, whereas the subsequent monchiquite magma produced a hybrid rock – monchiquite breccia with aillikite magmaclasts. The fluid phases produced during explosive emplacement of aillikite formed a breccia with a natrolite-rich matrix. Some magmaclasts that were not incorporated into the monchiquite matrix were instead cemented into hydrothermal natrolite breccias. Geochemical and isotopic contrasts between early pre-Khibina lamprophyre dikes (Terskiy Coast)—coeval with alkaline-ultramafic carbonatite massifs—and later dikes and pipes (Khibina massif) suggest a shift in the composition of carbonate-bearing metasomatic assemblages in the mantle source. Early melts involved K-Na amphibole, but this metasomatic phase was exhausted during large-scale melting, leading to source depletion. Late-stage melts were instead derived from a phlogopite-bearing source, formed by metasomatic overprinting of potassium-rich melts generated by incongruent amphibole melting. K-Na amphibole was involved in the generationof the early melts, but this metasomatic phase was exhausted during large-scale melting, leading to sourcedepletion. Instead, late stage melts were derived from a phlogopite-bearing source formed by metasomaticoverprinting of the early depleted source. The metasomatic agent was potassium-rich melts derived fromincongruent melting of K-Na amphibole.
About the authors
D. R. Shaikhutdinova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: darina@igem.ru
Moscow, Russia; Moscow, Russia
L. V. Sazonova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: darina@igem.ru
Moscow, Russia; Moscow, Russia
N. M. Lebedeva
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: darina@igem.ru
Moscow, Russia
A. A. Nosova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: darina@igem.ru
Moscow, Russia
A. V. Kargin
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: darina@igem.ru
Moscow, Russia
A. A. Arzamastsev
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences
Email: darina@igem.ru
Sankt-Peterburg, Russia
V. P. Kovach
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences
Author for correspondence.
Email: darina@igem.ru
Sankt-Peterburg, Russia
References
- Арзамасцев А.А., Арзамасцева Л.В. Геохимические индикаторы эволюции щелочно-ультраосновных серий палеозойских массивов Фенноскандинавского щита // Петрология. 2013. Т. 21. № 3. С. 277–308. https://doi.org/10.7868/s0869590313020027
- Арзамасцев А.А., Беляцкий Б.В. Эволюция мантийного источника Хибинского массива по данным Rb-Sr и Sm-Nd изучения глубинных ксенолитов // Докл. АН. 1999. Т. 366. № 3. С. 387–390.
- Арзамасцев А.А., Ву Ф. U-Pb геохронология и изотопная (Sr, Nd) систематика минералов щелочно-ультраосновных массивов Кольской провинции // Петрология. 2014. Т. 22. № 5. С. 496. https://doi.org/10.7868/S0869590314050021
- Арзамасцев А.А., Дальгрен С. Глубинные минеральные ассоциации в породах даек и трубок взрыва Палеозойской щелочной провинции Балтийского щита // Геохимия. 1993. № 8. С. 1132–1142.
- Арзамасцев А.А., Митрофанов Ф.П. Палеозойские плюм-литосферные процессы в Северо-Восточной Фенноскандии: оценка состава первичных мантийных расплавов и условий магмогенерации // Петрология. 2009. Т. 17. № 3. С. 324–336.
- Арзамасцев А.А., Каверина В.А., Полежаева Л.И. Дайковые породы Хибинского массива и его обрамления. Апатиты: КНЦ АН СССР, 1998. 86 с.
- Арзамасцев А.А., Беляцкий Б.В., Травин А.В. и др. Дайковые породы в Хибинском массиве: связь с плутоническими сериями, возраст, характеристика мантийных источников // Петрология. 2005. Т. 13. № 3. С. 295–318.
- Арзамасцев А.А., Арзамасцева Л.В., Жирова А.М., Глазнев В.Н. Модель формирования Хибино-Ловозерского рудоносного вулкано-плутонического комплекса // Геология рудн. месторождений. 2013. № 55. С. 397–414. https://doi.org/10.7868/s001677701305002x
- Арзамасцев А.А., Веселовский Р.В., Травин А.В. и др. Палеозойский толеитовый магматизм в кольской провинции: ареал распространения, возраст, связь со щелочным магматизмом // Петрология. 2017. Т. 25. № 1. С. 46–70. https://doi.org/10.7868/S0869590316060029
- Арзамасцев А.А., Иванова А.А., Сальникова Е.Б. и др. Возраст и происхождение субщелочных магматических серий Хибино-Ловозерского комплекса // Петрология. 2024. Т. 32. № 3. C. 291–313. https://doi.org/10.31857/S0869590324030024
- Голубева И.И., Ремизов Д.Н., Бурцев И.Н. и др. Флюидоэксплозивные ультрамафиты дайкового комплекса Среднего Тимана и их парагенетическая связь с карбонатитами // Региональная геология и металлогения. 2019. № 80. С. 30–44.
- Григорьева Л.В., Савицкий А.В. Новые данные о щелочных лампрофирах северо-восточного обрамления Хибинского массива // Докл. АН СССР. 1979. Т. 248. № 6. С. 1400–1403.
- Зак С.И., Каменев Е.А., Минаков Ф.В. и др. Щелочной Хибинский массив. Л.: Недра, 1972. 176 c.
- Калинкин М.М., Козырева Л.В., Ефимов М.М. и др. Трубки взрыва Онежско-Кандалакщской зоны в восточной части Балтийского щита // Прогнозирование месторождений полезных ископаемых на Кольском полуострове. Апатиты: КНЦ АН СССР, 1985. 94–100 с.
- Карандашев В.К., Хвостиков В.А., Носенко С.Ю., Бурмий Ж.П. Использование высокообогащенных стабильных изотопов в массовом анализе образцов горных пород, грунтов, почв и донных отложений методом масс-спектрометрии с индуктивно-связанной плазмой // Заводская лаборатория. Диагностика материалов. 2016. Т. 82. № 7. С. 6–15.
- Козырева Л.В. К минералогии эруптивных брекчий Хибинского массива // Новые данные по минералогии магматических и метаморфических комплексов Кольского п-ова. 1986. С. 10–15.
- Корешкова М.Ю., Левский Л.К, Иванников В.В. Петрология нижнекоровых ксенолитов из даек и трубок взрыва Кандалакшского грабена // Петрология. 2001. Т. 9. № 1. С. 89–106.
- Кухаренко А.А., Булах А.Г., Ильинский Г.А. и др. Металлогенические особенности щелочных формаций восточной части Балтийского щита // Тр. Ленингр. об-ва естествоиспыт. 1971. Т. 72. № 2. С. 280.
- Носова А.А., Ларионова Ю.О., Веретенников Н.В., Юткина Е.В. Корреляция неопротерозойского вулканизма Юго-Восточного Беломорья и Западного Урала: новые данные об изотопном возрасте базальтов Солозера (Онежский грабен) // Докл. АН. 2008. Т. 418. № 6. С. 811–816.
- Петрографический кодекс России магматические, метаморфические, метасоматические, импактные образования. СПб.: ВСЕГЕИ, 2009. 193 с.
- Сазонова Л.В., Лебедева Н.М., Носова А.А. и др. Особенности состава оливина из магматической брекчии (трубка взрыва г. Намуайв, Хибинский массив) // Щелочной и кимберлитовый магматизм Земли и связанные с ним месторождения стратегических металлов и алмазов. 2023. С. 351–355. http://dx.doi.org/10.37614/978-5-91137-500-3.071
- Стифеева М.В., Сальникова Е.Б., Носова А.А. и др. U-Pb (ID-TIMS) возраст граната из айлликитов Кольской щелочной провинции // Докл. АН. 2023. Т. 509. № 2. C. 225–229. https://doi.org/10.31857/S2686739722602782
- Arzamastsev A.A., Bea F., Glaznev V.N. et al. Kola alkaline province in the Paleozoic: Evaluation of primary mantle magma composition and magma generation conditions // Russian J. Earth Sci. 2001. V. 3. P. 1–32. https://doi.org/10.2205/2001ES000054
- Arzamastsev A.A., Ivanova A.A., Salnikova E.B. et al. Age and origin of the subalkaline magmatic series of the Khibiny–Lovozero Complex // Petrology. 2024. V. 32. P. 337–358. https://doi.org/10.1134/S0869591124700024
- Beard A., Downes H., Vetrin V. et al. Petrogenesis of Devonian lamprophyre and carbonatite minor intrusions, Kandalaksha Gulf (Kola Peninsula, Russia) // Lithos. 1996. V. 39. P. 93–119. https://doi.org/10.1016/S0024-4937(96)00020-5
- Beard A.D., Downes H., Hegner E. et al. Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites // Contrib. Mineral. Petrol. 1998. V. 130. No 3. P. 288–303.
- Beard A.D., Downes H., Mason P.R.D., Vetrin V.R. Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths // Lithos. 2007. V. 94. P. 1–24. https://doi.org/10.1016/j.lithos.2006.02.002
- Bühn B., Rankin A.H. Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions // Geochim. Cosmochim. Actа. 1999. V. 63. P. 3781–3797.
- Cas R.A.F., Hayman P., Pittari A., Porritt L. Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions // J. Volcanol. Geotherm. Res. 2008a. V. 174. P. 209–225. https://doi.org/10.1016/j.jvolgeores.2007.12.031
- Cas R.A.F., Porritt L., Hayman P., Pittari A. Pyroclast formation processes during explosive kimberlite eruptions // 9th International Kimberlite Conference. Frankfurt. Extended Abstract. 2008b. V. 9. https://doi.org/10.29173/ikc3279
- Dalton H., Giuliani A., Phillips D. et al. A comparison of geochronological methods commonly applied to kimberlites and related rocks: Three case studies from Finland // Chem. Geol. 2020. V. 558. 119899.
- Field M., Scott Smith B.H. Textural and genetic classification schemes of kimberlites: a new perspective // 7th International Kimberlite Conference. Extended Abstracts. Cape Town, South Africa. 1998. P. 214–216. https://doi.org/10.29173/ikc2687
- Foley S.F., Ezad I.S. Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 2. Trace element compositions of melts and minerals // Geosci. Front. 2024. V. 15. No 1. 101692.
- Foley S.F., Ezad I.S., Shu C., Förster M.W. Melting of amphibole-apatite-rich metasomes in the continental mantle and comparison of melt compositions with natural igneous rocks // Lithos. 2025. V. 500–501. 107976.
- Fowler A.C., Scheu B., Lee W.T., McGuinness M.J. A theoretical model of the explosive fragmentation of vesicular magma // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009. V. 466. P. 731–752. https://doi.org/10.1098/rspa.2009.0382
- Furman T., Graham D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province // Lithos. 1999. V. 48. No 1–4. P. 237–262. https://doi.org/10.1016/s0024-4937(99)00031-6
- Gernon T., Brown R., Tait M., Hincks T. The origin of pelletal lapilli in explosive kimberlite eruptions // Nature Communicat. 2012. V. 3. P. 832. https://doi.org/10.1038/ncomms1842
- Giordano D., Russell J.K., Dingwell D.B. Viscosity of magmatic liquids: A model // Earth Planet. Sci. Lett. 2008. V. 271. P. 123–134. https://doi.org/10.1016/j.epsl.2008.03.038
- Griffin W.L. Lherzolite Nodules from the Fen Alkaline Complex, Norway // Contrib. Mineral. Petrol. 1973. V. 38. P. 135–146.
- Grützner T., Prelević D., Berndt J., Klemme S. The origin of Na-alkaline lavas revisited: new constraints from experimental melting of amphibole-rich metasomes + lherzolite at uppermost mantle pressure // Contrib. Mineral. Petrol. 2023. V. 178. No 10. P. 73.
- Gurusinga M.A., Ohba T., Harijoko A., Hoshide T. Characteristics of ash particles from the maar complex of Lamongan Volcanic Field (LVF), East Java, Indonesia: How textural features and magma composition control ash morphology // Volcanica. 2023. V. 6. P. 415–436. https://doi.org/10.30909/vol.06.02.415436
- Haddock D., Manya S., Brown R.J. et al. Syn-eruptive agglutination of kimberlite volcanic ash // Volcanica. 2020. V. 3. P. 169–182. https://doi.org/10.30909/vol.03.01.169182
- Holmes A. Principles of Physical Geology. New York: Ronald Press Company, 1965. https://doi.org/10.1080/11035894509446436
- Huang F., Xu J.F., Liu Y.S. et al. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Cra- ton // Contrib. Mineral. Petrol. 2017. V. 172. P. 28. https://doi.org/10.1007/s00410-017-1342-4
- Ivanikov V.V., Rukhlov A.S., Bell K.F. Magmatic evolution of the melilitite-carbonatite-nephelinite dyke series of the Turiy Peninsula (Kandalaksha Bay, White Sea, Russia) // J. Petrol. 1998. V. 39. P. 2043–2059. https://doi.org/10.1093/PETROJ%2F39.11-12.2043
- Jones T.J., Russell J.K., Brown R.J., Hollendonner L. Melt stripping and agglutination of pyroclasts during the explosive eruption of low viscosity magmas // Nature Communicat. 2022. V. 13. https://doi.org/10.1038/s41467-022-28633-w
- Junqueira-Brod T.C., Brod J.A., Thompson R.N., Gibson S.A. Spinning droplets – a conspicuous lapilli-size structure in kamafugitic diatremes of southern goiás, Brazil // Rev. Bras. Geociênc. 1999. V. 29. P. 437–440. https://doi.org/10.25249/0375-7536.199929437440
- Kalashnikov A.O., Konopleva N.G., Pakhomov-sky Ya.A., Ivanyuk G.Yu. Rare earth deposits of the Murmansk region, Russia — a review // Econom. Geol. 2016. V. 111. P. 1529–1559. http://dx.doi.org/10.2113/econgeo.111.7.1529
- Kargin A.V. Geochemistry of mantle metasomatism related to formation of kimberlites in the northern East European Platform // Geol. Ore Deposits. 2014. V. 56. P. 409–430. https://doi.org/10.1134/S1075701514060038
- Kargin A.V., Nosova A.A., Postnikov A.V. et al. Devonian ultramafic lamprophyre in the Irkineeva–Chadobets trough in the southwest of the Siberian Platform: Age, composition, and implications for diamond potential prediction // Geol. Ore Deposits. 2016. V. 58. P. 383–403.
- Kargin A.V., Sazonova L.V., Nosova A.A. et al. Phlogopite in mantle xenoliths and kimberlite from the Grib pipe, Arkhangelsk province, Russia: Evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite // Geosci. Front. 2019. V. 10. P. 1941–1959. https://doi.org/10.1016/j.gsf.2018.12.006
- Kargin A., Bussweiler Y., Nosova A. et al. Titanium-rich metasomatism in the lithospheric mantlebeneath the Arkhangelsk Diamond Province, Russia: insights from ilmenite-bearing xenoliths and HP-HT reaction experi-ments // Contrib. Mineral. Petrol. 2021. V. 176. P. 101.
- Kempton P.D., Downes H., Neymark L.A. et al. Garnet granulite xenoliths from the Northern Baltic Shield — the underplated lower crust of a Palaeoproterozoic large igneous province? // J. Petrol. 2001. V. 42. No 4. P. 731–763.
- Kogarko L.N. Alkaline magmatism and enriched mantle reservoirs: Mechanisms, time, and depth of formation // Geochem. Int. 2006. V. 44. P. 3–10. https://doi.org/10.1134/S0016702906010022
- Kogarko L.N., Lahaye Y., Brey G.P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics // Mineral Petrol. 2010. V. 98. P. 197–208. https://doi.org/10.1007/s00710-009-0066-1
- Kokandakar G.J., Ghodke S.S., Rathna K. et al. Density, viscosity and velocity (ascent rate) of alkaline magmas // J. Geol. Soc. India. 2018. V. 91. P. 135–146. https://doi.org/10.1007/s12594-018-0827-8
- Kramm U., Kogarko L.N. Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia // Lithos. 1994. V. 32. P. 225–242. https://doi.org/10.1016/0024-4937%2894%2990041-8
- Kramm U., Kogarko L.N., Kononova V.A., Vartiai- nen H. The Kola Alkaline Province of the CIS and Finland: Precise Rb Sr ages define 380–360 Ma age range for all magmatism // Lithos. 1993. V. 30. P. 33–44. https://doi.org/10.1016/0024-4937(93)90004-V.
- Larionova Y.O., Sazonova L.V., Lebedeva N.M. et al. Kimberlite age in the Arkhangelsk Province, Russia: Isotopic geochronologic Rb-Sr and 40Ar/39Ar and mineralogical data on phlogopite // Petrology. 2016. V. 24. P. 562–593. https://doi.org/10.1134/S0869591116040020
- Le Maitre R.W. Igneous Rocks: А Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press, 2002. 236 р.
- Le Maitre R.W., Bateman P., Dudek A. et al. A classification of igneous rocks and glossary of terms. Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Hoboken: Blackwell Science Publ., 1989. 193 p.
- Lebedeva N.M., Nosova A.A., Kargin A.V. et al. Sr-Nd-O isotopic evidence of variable sources of mantle metasomatism in the subcratonic lithospheric mantle beneath the Grib kimberlite, northwestern Russia // Lithos. 2020. P. 376–377. https://doi.org/10.1016/j.lithos.2020.105779
- Lefebvre N., Kurszlaukis S. Contrasting eruption styles of the 147 Kimberlite, Fort à la Corne, Saskatchewan, Canada // J. Volcanol. Geotherm. Res. 2008. V. 174. P. 171–185. https://doi.org/10.1016/j.jvolgeores.2007.12.048
- Lefebvre N., Kopylova M., Kivi K. Archean calc-alkaline lamprophyres of Wawa, Ontario, Canada: Unconventional diamondiferous volcaniclastic rocks // Precambri. Res. 2005. V. 138. P. 57–87. https://doi.org/10.1016/j.precamres.2005.04.005
- Lloyd F., Stoppa F. Pelletal lapilli in diatremes – some inspiration from the old masters // Geolines. 2003. V. 15. P. 65–71.
- Lorenz V. Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes // Phys. Chem. Earth. 1975. V. 9. P. 17–27.
- Meert J.G., Walderhaug H.J., Torsvik T.H., Hend-riks B.W. Age and paleomagnetic signature of the Alnø carbonatite complex (NE Sweden): Additional controversy for the Neoproterozoic paleoposition of Baltica // Precambr. Res. 2007. V. 154. No 3–4. P. 159–174.
- Mirnejad H., Bell K. Origin and source evolution of the Leucite Hills lamproites: evidence from Sr-Nd-Pb-O isotopic compositions // J. Petrol. 2006. V. 47. No 12. P. 2463–2489.
- Mitchell R.H. Kimberlites, Orangeites, and Related Rocks. New York, London: Plenum Press, 1995. 410 p.
- Mitchell R.H. Kimberlites, Orangeites, Lamproites, Melilitites, and Minettes: А Petrographic Atlas. Ontario: Almaz Press Inc., 1997. 243 p.
- Mitchell R.H., Wu F.-Y., Yang Y.-H. In situ U-Pb, Sr and Nd isotopic analysis of loparite by LA-(MC)-ICP-MS // Chem. Geol. 2011. V. 280. Iss. 1–2. P. 191–199. https://doi.org/10.1016/j.chemgeo.2010.11.008
- Moss S., Russell J.K. Fragmentation in kimberlite: Products and intensity of explosive eruption // Bull. Volcanol. 2011. V. 73. P. 983–1003. https://doi.org/10.1007/s00445-011-0504-x
- Nosova A.A., Kopylova M.G., Sazonova L.V. et al. Petrology of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Europe) // Lithos. 2021a. P. 398–399. https://doi.org/10.1016/j.lithos.2021.106277
- Nosova A.A., Sazonova L.V., Kargin A.V. et al. Mineralogy and geochemistry of ocelli in the damtjernite dykes and sills, Сhadobets uplift, Siberian craton: Evidence of the fluid – lamprophyric magma interaction // Minerals. 2021b. V. 11. https://doi.org/10.3390/min11070724
- Nosova A.A., Kopylova M.G., Lebedeva N.M. et al. Melt sources for alkaline carbonate-bearing rocks of the Terskiy Coast (Kola Alkaline Carbonatitic Province) // Chem. Geol. 2023. V. 617. https://doi.org/10.1016/j.chemgeo.2022.121267
- Pearce J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust // Lithos. 2008. V. 100. P. 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
- Price S.E., Russell J.K., Kopylova M.G. Primitive magma from the Jericho Pipe, N.W.T., Canada: Constraints on primary kimberlite melt chemistry // J. Petrol. 2000. V. 41. P. 789–808.
- Prokopyev I., Doroshkevich A., Starikova A. et al. Petrogenesis of juvenile pelletal lapilli in ultramafic lamprophyres // Sci. Reports. 2023. V. 13. https://doi.org/10.21203/rs.3.rs-2490695/v1
- Robert B., Domeier M., Jakob J. On the origins of the Iapetus Ocean // Earth-Sci. Reviews. 2021. V. 221. 103791.
- Rock N.M.S. The nature and origin of lamprophyres: an overview // Alkaline Igneous Rocks. Geol. Soc. Spec. Publ. 30. Blackwell Scientific Publ., 1987. 568 p.
- Rock N.M.S. Lamprophyres. Boston: Springer US, 1991. https://doi.org/10.1007/978-1-4757-0929-2
- Samsonov A.V., Stepanova A.V., Salnikova E.B. et al. Geodynamics of a Breakup of Western Part of the Karelian Craton: Data on 2.1 Ga Mafic Magmatism // Petrology. 2023. V. 31. No. 6. P. 581–603.
- Internal structure andoccurrence of accretionary lapilli – a case study at LaacherSee Volcano // Bull. Vol. 1991. V. 53. No 8. P. 612–634. https://doi.org/10.1007/bf00493689
- Scott Smith B.H., Nowicki T.E., Russell J.K. et al. Kimberlite terminology and classification // Proceedings of 10th International Kimberlite Conference. 2013. V. 2. https://doi.org/10.1007/978-81-322-1173-0_1
- Scott Smith B.H., Nowicki T.E., Russell J.K. et al. A Glossary of Кimberlite and Related Тerms. Vancouver: Scott-Smith Petrology Inc., 2018. Part 1.144 p.; Part 2. 59 p.; Part 3. 56 p.
- Seghedi I., Maicher D., Kurszlaukis S. Volcanology of Tuzo pipe (Gahcho Kué cluster) – root-diatreme processes re-interpreted // International Kimberlite Conference. Extended Abstracts. 2008. V. 9. https://doi.org/10.29173/ikc3300
- Sindern S., Zaitsev A., Demény A. et al. Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina Complex (Kola, Russia) – isotope constraints on genesis and small-scale mantle sources // Mineral. Petrol. 2004. V. 80. P. 215–239. https://doi.org/10.1007/S00710-003-0016-2
- Skinner E.M., Marsh J.S. Distinct kimberlite pipe classes with contrasting eruption processes // Lithos. 2004. V. 76. P. 183–200. https://doi.org/10.1016/J.LITHOS.2004.03.044
- Sparks R.S.J., Baker L., Brown R.J. et al. Dynamical constraints on kimberlite volcanism // J. Volcanol. Geotherm. Res. 2006. V. 155. Iss. 1–2. P. 18–48. https://doi.org/10.1016/j.jvolgeores.2006.02.010
- Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc. London. Spec. Publ. 1989. V. 42. P. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- Tappe S., Foley S.F., Jenner G.A. et al. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton // J. Petrol. 2006. V. 47. P. 1261–1315. https://doi.org/10.1093/petrology/egl008
- Tegner C., Andersen T.B., Kjøll H.J. et al. A mantle plume origin for the Scandinavian dyke complex: A “piercing point” for 615 Ma plate reconstruction of Baltica? // Geochem. Geoph. Geosyst. 2019. V. 20. No 2. P. 1075–1094.
- Torsvik T.H., Smethurst M.A., Meert J.G. et al. Continental break-up and collision in the Neoproterozoic and Palaeozoic — a tale of Baltica and Laurentia // Earth-Sci. Reviews. 1996. V. 40. No 3–4. P. 229–258.
- Veselovskiy R.V., Arzamastsev A.A., Demina L.I. et al. Paleomagnetism, geochronology, and magnetic mineralogy of Devonian dikes from the Kola alkaline province (NE Fennoscandian Shield) // Izvestiya, Physics of the Solid Earth. 2013. V. 49. P. 526–547. https://doi.org/10.1134/S106935131303018X
- Webb K., Hetman C. Magmaclasts in kimberlite // Lithos. 2021. V. 396–397. https://doi.org/10.1016/j.lithos.2021.106197
- Wiest J.D., Jacobs J., Fossen H. et al. Segmentation of the Caledonian orogenic infrastructure and exhumation of the Western Gneiss Region during transtensional collapse // J. Geol. Soc. 2021. V. 178. No 3. https://doi.org/10.1144/jgs2020-199
- Zartman R.E., Kogarko L.N. Lead isotopic evidence for interaction between plume and lower crust during emplacement of peralkaline Lovozero rocks and related rare-metal deposits, East Fennoscandia, Kola Peninsula, Russia // Contrib. Mineral. Petrol. 2017. V. 172. P. 1–14.
- Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Magazine. 2021. V. 85. P. 291–320.
Supplementary files
