Coexisting Baddeleyite and Zircon in Early Eocene Andesites of the Sikhote Alin: U-Pb Geochronology, Trace-Element Features, and Petrological and Tectonic Implications
- Авторлар: Rodionov N.V.1, Surin T.N.1, Belyatsky B.V.1, Medvedev V.A.2, Stepanova A.V.3, Samsonov A.V.4
-
Мекемелер:
- Karpinsky Russian Geological Research Institute
- OOO “Tellur Severo-Vostok”
- Institute of Geology, Karelian Research Centre RAS
- Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
- Шығарылым: Том 33, № 4 (2025)
- Беттер: 31-55
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0869-5903/article/view/305351
- DOI: https://doi.org/10.31857/S0869590325040027
- EDN: https://elibrary.ru/svxafp
- ID: 305351
Дәйексөз келтіру
Аннотация
Relatively large crystals of baddeleyite (up to 100 μm) and zircon (up to 400 μm) were found in Cenozoic subalkaline andesites in the north of Sikhote-Alin. The reasons for such a rare association of Zr minerals for volcanics are discussed based on the petrological characteristics of andesites, U-Pb isotope dating and the results of studying the contents of trace elements in baddeleyite and zircon. Andesites contain rare clinopyroxene phenocrysts, the crystallization of which occurred in the temperature range of 1090–1150°C. The fine-grained matrix is composed of pyroxene, plagioclase, hornblende, ilmenite and acid domains, which consist of K-Na feldspars, quartz and acid glass and were formed at T = 926°C. Accessory baddeleyite and zircon are confined to acid domains. U-Pb age of baddeleyite 52.7 ± 1.1 Ma (MSWD = 2.6) can be used as a preliminary estimate of the crystallization age of andesite melts. Age values 206Pb*/238U of zircon are in a wide range from 46 to 56 Ma. The youngest age values (46–49 Ma) probably reflect a partial disturbance of the isotope system caused by high contents of U (up to 1.3 wt.%) and Th (up to 3.8 wt.%). Baddeleyite has a decrease in the concentrations of Hf (from 7742 to 2869 μg/g), Y and heavy REE, which could be associated with its crystallization in competition with amphibole. Deep negative Eu anomalies in baddeleyite and zircon suggest their growth simultaneously with feldspars. High concentrations of heavy REE, U and Th in zircon indicate its crystallization from enriched residual melts. The zircon crystallization temperature estimated using the Ti-in-zircon geothermometer (from 800 to 990°C) is comparable with temperature estimates for acid domains. Thus, the baddeleyite and zircon compositions suggest their crystallization at late stages of melt evolution, which could have occurred in an intermediate magmatic chamber. The studied Early Eocene andesites in the magmatic history of Sikhote-Alin occupy the period between the preceding Paleocene-Early Eocene A-type rhyolites (61–53 Ma) and the subsequent Eocene–Miocene basalts (40–20 Ma). This period is associated with the extension of the lithosphere due to the rupture of the continuity of the submerged oceanic plate and the opening of the “mantle windowˮ, and the studied early Eocene andesites probably mark the peak of this tectonic event.
Авторлар туралы
N. Rodionov
Karpinsky Russian Geological Research Institute
Email: samsonovigem@mail.ru
St. Petersburg, Russia
T. Surin
Karpinsky Russian Geological Research Institute
Email: samsonovigem@mail.ru
St. Petersburg, Russia
B. Belyatsky
Karpinsky Russian Geological Research Institute
Email: samsonovigem@mail.ru
St. Petersburg, Russia
V. Medvedev
OOO “Tellur Severo-Vostok”
Email: samsonovigem@mail.ru
Saint Petersburg, Russia
A. Stepanova
Institute of Geology, Karelian Research Centre RAS
Хат алмасуға жауапты Автор.
Email: samsonovigem@mail.ru
Petrozavodsk, Russia
A. Samsonov
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: samsonovigem@mail.ru
Moscow, Russia
Әдебиет тізімі
- Буханченко А.И., Григорьев В.Б., Иванов А.П., Романов Б.И. Государственная геологическая карта Российской Федерации. Масштаб 1:200 000 (2-е поколение). Серия Комсомольская. Лист М-53-IV. Объяснительная записка. СПб.: Картфабрика ВСЕГЕИ, 1981. 299 с.
- Гребенников А.В., Касаткин С.А., Федосе- ев Д.Г., Ханчук А.И. Среднепалеоцен–раннеэоценовый (60.5–53 млн лет) этап магматизма на юге Дальнего Востока России // Тихоокеанская геология. 2020. Т. 39. С. 34–40.
- Куделько И.Ю., Петрушков Б.С., Юрченко Ю.Ю. и др. Отчет о результатах работ по объекту “Проведение в 2018–2020 годах региональных геолого-съемочных работ масштаба 1:200000 на группу листов в пределах Дальневосточного ФО (Южные районы)”. СПб.: ВСЕГЕИ, 2020. Кн. 2. РГФ № 540066.
- Мартынов Ю.А., Чащин А.А., Симаненко В.П., Мартынов А.Ю. Маастрихт-датская андезитовая серия Восточного Сихотэ-Алиня: минералогия, геохимия и вопросы петрогенезиса // Петрология. 2007. Т. 15. № 3. С. 282–303.
- Сальникова Е.Б., Степанова А.В., Азимов П.Я. и др. История формирования коронитовых метагаб- броноритов Беломорской провинции Фенноскандинавского щита: результаты U-Pb (СА-ID-TIMS) датирования циркон-бадделеитовых агрегатов // Петрология. 2022. Т. 30. № 6. С. 596–622.
- Тиньков Е.А. Геологическое строение и полезные ископаемые бассейна р. Дуки // Отчет о результатах групповой геологической съемки масштаба 1:50 000 и поисковых работ в бассейне р. Дуки на площади 3030 км2, проведенных Амгунской-80 партией в 1980–1985 гг. 1985 г.
- Файн Я. И., Шуршалина В. А., Нелюбин В. П., Шевченко В.К. Геология, подземные воды, полезные ископаемые бассейна среднего течения р. Амгунь. Лист N-54-XXV. (Результаты комплексных геолого-съемочных работ масштаба 1:200 000 партии 314 за 1956–1958 гг.). 1958.
- Шаруева Л.И., Саутченкова Р.А., Макар В.И. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (3-е поколение). Серия Дальневосточная. Лист N-54 (Николаевск-на-Амуре). Объяснительная записка. 2014. СПб.: Картфабрика ВСЕГЕИ, 496 с.
- Ханчук А.И., Гребенников А.В., Иванов В.В. Альб-сеноманские окраинно-континентальный орогенный пояс и магматическая провинция Тихоокеанской Азии // Тихоокеанская геология. 2019. Т. 38. С. 4–29.
- Allibon J., Ovtcharova M., Bussy F. et al. Lifetime of an ocean island volcano feeder zone: Constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40Ar/39Ar age determinations, Fuerteventura, Canary Islands // Can. J. Earth Sci. 2011. V. 48. P. 567–592.
- Bea F., Bortnikov N., Cambeses A. et al. Zircon crystallization in low-Zr mafic magmas: Possible or impossible? // Chem. Geol. 2022. V. 602. 120898.
- Bindeman I.N., Valley J.W. Low-δ18O rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts // J. Petrol. 2001. V. 42. P. 1491–1517
- Borisov A., Aranovich L. Zircon solubility in silicate melts: New experiments and probability of zircon crystallization in deeply evolved basic melts // Chem. Geol. 2019. V. 510. P. 103–112.
- Chamberlain K.R., Schmitt A.K., Swapp S.M. et al. In situ U-Pb SIMS (IN-SIMS) microbaddeleyite dating of mafic rocks: Method with examples // Precambr. Res. 2010. V. 183. P. 379–387.
- Davies J.H.F.L., Marzoli A., Bertrand H. et al. Zircon petrochronology in large igneous provinces reveals upper crustal contamination processes: New U-Pb ages, Hf and O isotopes, and trace elements from the Central Atlantic magmatic province (CAMP) // Contrib. Mineral. Petrol. 2021. V. 176. № 9.
- Deer W.A., Howie R.A., Zussman J. An Introduction to the Rock forming Minerals. 3rd ed. London: Longman, 2013. 498 p.
- Ewart A., Marsh J.S., Milner S.C. et al. Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Part 2: characteristics and petrogenesis of the high-Ti latite and high-Ti and low-Ti voluminous quartz latite eruptives // J. Petrol. 2004. V. 45. P. 107–138.
- Ewing R.C., Meldrum A., Wang L.-M. et al. Radiation effects in zircons // Rev. Mineral. Geochem. 2003. V. 53. P. 387–425.
- Fan H.-P., Zhu W.-G., Li Zh.-X. et al. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block // Lithos. 2013. V. 168–169. P. 85–98.
- Foley S.F., Venturelli G., Green D.H., Toscani L. The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models // Earth-Sci. Rev. 1987. V. 24. P. 81–134.
- Grebennikov A.V., Kasatkin S.A. Paleocene A-type igneous suites in the Sikhote-Alin (the East Asian continental margin): Petrological, geochronological, isotopic, and geodynamic constraints // Geosci. Frontiers. 2023. V. 14. 101673.
- Grebennikov A.V., Kemkin I.V., Khanchuk A.I. Paleocene–early Eocene post-subduction magmatism in Sikhote-Alin (Far East Russia): New constraints for the tectonic history of the Izanagi-Pacific ridge and the East Asian continental margin // Geosci. Frontiers. 2021. V. 12. 101142.
- Gudelius D., Zeh A., Wilson A.H. Zircon formation in mafic and felsic rocks of the Bushveld Complex, South Africa: Constraints from composition, zoning, Th/U ratios, morphology, and modeling // Chem. Geol. 2020. V. 546. 119647.
- Guitreau M., Flahaut J. Record of low-temperature aqueous alteration of Martian zircon during the late Amazonian // Nature Communicat. 2019. V. 10. 2457.
- Hanchar J.M., Hoskin P.W.O. Zircon // Rev. Mineral. Geochem. 2003. V. 53. P. 1–600.
- Heaman L.M., LeCheminant A.N. Paragenesis and U-Pb systematics of baddeleyite (ZrO2) // Chem. Geol. 1993. V. 110. P. 95–126.
- Hoskin P.W.O., Kinny P.D., Wyborn D., Chap- pell B.W. Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach // J. Petrol. 2000. V. 41. P. 1365–1396.
- Hughes C.J. Spilites, keratophyres, and the igneous spectrum // Geol. Mag. 1972. V. 109. P. 513–527.
- Hui B., Dong Y., Qu H. et al. Xenocrystic zircons from mafic volcanic rocks in the Bikou Terrane: A window to trace the Paleoarchean to Mesoproterozoic crustal evolution of the northwestern Yangtze Block, South China // Precambr. Res. 2024. V. 403. 107327.
- Janasi V.D.A., de Freitas V.A., Heaman L.H. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite // Earth Planet. Sci. Lett. 2011. V. 302. P. 147–153.
- Kasatkin S.A., Grebennikov A.V. The early Paleogene strike-slip tectonic setting at the northeastern Asian margin: Magmatism and structural evidences // Intern. Geol. Rev. 2023. V. 65. P. 2288–2314.
- Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data // J. Asian Earth Sci. 2016. V. 120. P. 117–138.
- Kontak D.J., DeWolfe M.Y., Dostal J. Late-stage crystallization history of the Jurassic North Mountain Basalt, Nova Scotia: I. Evidence for pervasive silicate-liquid immiscibility // Canad. Mineral. 2002. V. 40. P. 1287–1311.
- Krogh T.E., Corfu F., Davis D.W. et al. Precise U-Pb isotopic ages of diabase dykes and mafic to ultramafic rocks using trace amounts of baddeleyite and zircon // Еds. H.C. Halls, W.F. Fahrig. Mafic Dyke Swarms. 1987. GAC Special Paper. V. 34. P. 147–152.
- Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanet-tin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram // J. Petrol. 1986. V. 27. P. 745–750.
- Li L., Shi Y., Anderson J.L., Ubide T. et al. Dating mafic magmatism by integrating baddeleyite, zircon, and apatite U-Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton // Lithos. 2021. V. 380–381. 105820.
- Lumpkin G.R. Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: An overview and case study // J. Nucl. Mater. 1999. V. 274. P. 206–217.
- Martynov Yu.A., Khanchuk A.I., Grebennikov A.V. et al. Late Mesozoic and Cenozoic volcanism of the East Sikhote-Alin area (Russian Far East): A new synthesis of geological and petrological data // Gondwana Res. 2017. V. 47. P. 358–371.
- McDonough W.F., Sun S.-S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
- Morimoto N., Fabriès J., Ferguson A.K. et al. Nomenclature of pyroxenes // Amer. Mineral. 1988. V. 73. P. 1123–1133.
- Murakami T., Chakoumakos B.C., Ewing R.C. et al. Alpha-decay event damage in zircon // Amer. Mineral. 1991. V. 76. P. l5l0–1532.
- Nasdala L., Hofmeister W., Norberg N. et al. Zircon M257 – a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon // Geostand. Geoanal. Res. 2008. V. 32. P. 247–265.
- Neave D.A., Putirka K.D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones // Ameri. Mineral. 2017. V. 102. C. 777–794.
- Nekvasil H., Burnham C.W. The calculated individual effects of pressure and water content on phase equilibria in the granite system // Еd. В.О. Mysen. Magmatic Processes: Physicochemical Principles. Geochem. Soc. Spec. Publ. 1987. V. 1. P. 433–445.
- Okamura S., Martynov Yu.A., Furuyama K., Nagao K. K-Ar ages of the basaltic rocks from Far East Russia: constraints on the tectono-magmatism associated with the Japan Sea opening // The Island Arc. 1998. V. 7. P. 271–282.
- Rodionov N.V., Belyatsky B.V., Antonov A.V. et al. Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia // Gondwana Res. 2012. V. 21. P. 728–744.
- Rubatto D., Hermann J. Chemical experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks // Geology. 2007. V. 241. P. 38–61.
- Schaltegger U., Davies J.H.F.L. Petrochronology of zircon and baddeleyite in igneous rocks: Reconstructing magmatic processes at high temporal resolution // Rev. Mineral. Geochem. 2017. V. 83. P. 297–328.
- Söderlund U., Johansson L. A simple way to extract baddeleyite (ZrO2) // Geochem. Geoph. Geosyst. 2002. V. 3. Iss. 2. https://doi.org/10.1029/2001GC000212
- Vermeesch P. IsoplotR: A free and open toolbox for geochronology // Geosci. Front. 2018. V. 9. P. 1479–1493.
- Wang T., Zheng J., Zhao H. Unexposed Archean components and complex evolution beneath the Cathaysia Block: Evidence from zircon xenocrysts in the Cenozoic basalts in Leizhou Peninsula, South China // J. Asian Earth Sci. 2020. V. 192. 104268.
- Wang X., Hou T., Wang M. et al. A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems // Eur. J. Mineral. 2021. V. 33. P. 621–637.
- Watson E.B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile // Contrib. Mineral. Petrol. 2006. V. 151. P. 413–433.
- Wedepohl K.H., Hartmann G. The composition of the primitive upper Earth’s mantle // Eds. H.O.A. Meyer, O.H. Leonardos. Kimberlites, related rocks and mantle xenoliths. Rio de Janeiro: Companhia de Pesquisa de Recursos Minerais, 1994. V. 1. P. 486–495.
- Wen S., Nekvasil H. SOLVCALC; an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry // Comput. Geosci. 1994. V. 20. P. 1025–1040.
- White L.T., Ireland T.R. High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations // Chem. Geol. 2012. V. 306–307. P. 78–91.
- Wiedenbeck M., Hanchar J.M., Peck W.H. et al. Further characterisation of the 91500 zircon crystal // Geostandards Geoanalytical Res. 2004. V. 28. P. 9–39.
- Williams I.S., Hergt J.M. U-Pb dating of Tasmanian dolerites: A cautionary tale of SHRIMP analysis of high-U zircon // Eds. J.D. Woodhead, J.M. Hergt, W.P. Noble. New Frontiers in Isotope Geoscience. Lorne, Australia. 2000. P. 185–188.
- Wingate M.T.D., Compston W. Crystal orientation effects during ion microprobe U-Pb analysis of baddeleyite // Chem. Geol. 2000. V. 168. P. 75–97.
- Wu F.-Y., Yang Y.-H., Li Q.-L. et al. In situ determination of U-Pb ages and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite complex, South Africa // Lithos. 2011. V. 127. P. 309–322.
- Wu J.T.-J., Jahn B.-M., Nechaev V. et al. Geochemical characteristics and petrogenesis of adakites in the Sikhote-Alin area, Russian Far East // J. Asian Earth Sci. 2017. V. 145. P. 512–529.
- Wu W.N., Schmitt A.K., Pappalardo L. U-Th baddeleyite geochronology and its significance to date the emplacement of silica undersaturated magmas // Amer. Mineral. 2015. V. 100. P. 2082–2090.
- Yakymchuk C., Holder R.M., Kendrick J., Moyend J.-F. Europium anomalies in zircon: A signal of crustal depth? // Earth Planet. Sci. Lett. 2023. V. 622. 118405.
Қосымша файлдар
