Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 211, № 6 (2020)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Локальный инфимум и семейство принципов максимума в оптимальном управлении

Аваков Е.Р., Магарил-Ильяев Г.Г.

Аннотация

В работе вводится понятие локального инфимума для задачи оптимального управления, обобщающее понятие оптимальной траектории. Для локального инфимума доказывается теорема существования и выводятся необходимые условия, представляющие собой по форме некоторое семейство “принципов максимума”. Приводятся примеры, показывающие содержательность полученных необходимых условий, которые обобщают и усиливают принцип максимума Понтрягина. Библиография: 9 названий.
Математический сборник. 2020;211(6):3-39
pages 3-39 views

Пространства Соболева $W^{1}_{p}$ на $d$-толстых замкнутых подмножествах $\mathbb{R}^{n}$

Водопьянов С.К., Тюленев А.И.

Аннотация

Пусть $S \subset \mathbb{R}^{n}$ – замкнутое непустое множество такое, что для некоторых$d \in [0,n]$ и $\varepsilon>0$ $d$-вместимость по Хаусдорфу $\mathscr{H}^{d}_{\infty}(S \cap Q(x,r)) \geq \varepsilon r^{d}$ для всех кубов $Q(x,r)$ с центрами в $x \in S$ и длинами ребер $2r \in (0,2]$. Для каждого $p>\max\{1,n-d\}$ мы даем внутреннюю характеризацию пространства следов $W_{p}^{1}(\mathbb{R}^{n})|_{S}$ на множестве $S$ пространства Соболева $W_{p}^{1}(\mathbb{R}^{n})$. Более того, мы доказываем существование ограниченного линейного оператора продолжения $\operatorname{Ext}\colon W_{p}^{1}(\mathbb{R}^{n})|_{S} \to W_{p}^{1}(\mathbb{R}^{n})$, являющегося правым обратным для стандартного оператора следа. Тем самым мы обобщаем соответственно те результаты, которые были получены ранее в случае $p \in (1,n]$ для регулярных по Альфорсу множеств $S$.Библиография: 36 названий.
Математический сборник. 2020;211(6):40-94
pages 40-94 views

О каноническом базисе пары согласованных скобок Пуассона на алгебре матриц

Гаража А.А.

Аннотация

Для произвольной комплексной матрицы $A$ и общей матрицы $X$ найден канонический базис кронекеровой части билагранжева подпространства относительно соответствующих скобок Пуассона на алгебре Ли $\mathfrak{gl}_n(\mathbb C)$, а также соответствующая этому базису система функций в биинволюции. В частности, для нильпотентных матриц $A$ доказано, что все ненулевые функции, полученные методом сдвига аргумента Мищенко–Фоменко, примененного к коэффициентам характеристического многочлена, составляют кронекерову часть полной системы функций в биинволюции. Библиография: 9 названий.
Математический сборник. 2020;211(6):95-106
pages 95-106 views

Функции с универсальными рядами Фурье–Уолша

Григорян М.Г.

Аннотация

В работе доказаны некоторые теоремы, связанные с существованием и описанием структуры функций, ряды Фурье которых по системе Уолша универсальны в том или ином смысле в функциональных классах $L^{p}[0,1]$, $0< p< 1$, и $M[0,1]$.
Библиография: 30 названий.

Математический сборник. 2020;211(6):107-131
pages 107-131 views

Три-ткани $W(r, r, 2)$

Шелехов А.М.

Аннотация

Рассматриваются локальные дифференциально-геометрические свойства три-тканей $W(r, r, 2)$, образованных на $2r$-мерном многообразии слоениями коразмерностей $r$, $r$, $2$. Таковыми, в частности, являются три-ткани, определяемые комплексно-аналитической функцией от $r$ комплексных аргументов. Найдены структурные уравнения три-ткани $W(r, r, 2)$ в адаптированном, в частности, в естественном корепере; введена каноническая связность $\Gamma$ на многообразии три-ткани $W(r, r, 2)$; получены формулы для вычисления (в естественном кобазисе) компонент первого структурного тензора три-ткани $W(r, r, 2)$ через производные от функции этой ткани. Детально рассмотрены три специальных класса три-тканей $W(r, r, 2)$: регулярные и групповые три-ткани, а также три-ткани $W(r, r, 2)$, порожденные голоморфной функцией. Библиография: 17 названий.
Математический сборник. 2020;211(6):132-156
pages 132-156 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».