Sobolev $W^1_p$-spaces on $d$-thick closed subsets of $\mathbb R^n$
- 作者: Vodopyanov S.K.1, Tyulenev A.I.2
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 211, 编号 6 (2020)
- 页面: 40-94
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/142355
- DOI: https://doi.org/10.4213/sm9199
- ID: 142355
如何引用文章
详细
作者简介
Sergei Vodopyanov
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Email: vodopis@math.nsc.ru
Doctor of physico-mathematical sciences, Professor
Alexander Tyulenev
Steklov Mathematical Institute of Russian Academy of Sciences
Email: tyulenev-math@yandex.ru
Candidate of physico-mathematical sciences, Associate professor
参考
- H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36:1 (1934), 63–89
- H. Whitney, “Differentiable functions defined in closed sets. I”, Trans. Amer. Math. Soc., 36:2 (1934), 369–387
- G. Glaeser, “Etude de quelques algèbres tayloriennes”, J. Analyse Math., 6 (1958), 1–124
- Yu. Brudnyi, P. Shvartsman, “The Whitney problem of existence of a linear extension operator”, J. Geom. Anal., 7:4 (1997), 515–574
- E. Bierstone, P. D. Milman, W. Pawlucki, “Differentiable functions defined in closed sets. A problem of Whitney”, Invent. Math., 151:2 (2003), 329–352
- C. Fefferman, “A sharp form of Whitney's extension theorem”, Ann. of Math. (2), 161:1 (2005), 509–577
- C. Fefferman, “A generalized sharp Whitney theorem for jets”, Rev. Mat. Iberoam., 21:2 (2005), 577–688
- C. Fefferman, “Whitney's extension problem for $C^m$”, Ann. of Math. (2), 164:1 (2006), 313–359
- C. Fefferman, “$C^m$ extension by linear operators”, Ann. of Math. (2), 166:3 (2007), 779–835
- V. G. Maz'ya, S. V. Poborchi, Differentiable functions on bad domains, World Sci. Publ., River Edge, NJ, 1997, xx+481 pp.
- C. L. Fefferman, A. Israel, G. K. Luli, “Sobolev extension by linear operators”, J. Amer. Math. Soc., 27:1 (2014), 69–145
- C. Fefferman, A. Israel, G. K. Luli, “The structure of Sobolev extension operators”, Rev. Mat. Iberoam., 30:2 (2014), 419–429
- C. Fefferman, A. Israel, G. K. Luli, “Fitting a Sobolev function to data I”, Rev. Mat. Iberoam., 32:1 (2016), 275–376
- C. Fefferman, A. Israel, G. K. Luli, “Fitting a Sobolev function to data II”, Rev. Mat. Iberoam., 32:2 (2016), 649–750
- A. Israel, “A bounded linear extension operator for $L^{2,p}(mathbb{R}^{2})$”, Ann. of Math. (2), 178:1 (2013), 183–230
- P. Shvartsman, “Sobolev $W^{1}_{p}$-spaces on closed subsets of $mathbf{R}^{n}$”, Adv. Math., 220:6 (2009), 1842–1922
- P. Shvartsman, “Sobolev $L^{2}_{p}$-functions on closed subsets of $mathbf{R}^{2}$”, Adv. Math., 252 (2014), 22–113
- P. Shvartsman, Extension criteria for homogeneous Sobolev space of functions of one variable
- P. Shvartsman, Sobolev functions on closed subsets of the real line: long version
- И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
- L. Ihnatsyeva, A. V. Vähäkangas, “Characterization of traces of smooth functions on Ahlfors regular sets”, J. Funct. Anal., 265:9 (2013), 1870–1915
- A. Jonsson, H. Wallin, Function spaces on subsets of $mathbb{R}^{n}$, Math. Rep., 2, no. 1, Harwood Acad. Publ., London, 1984, xiv+221 pp.
- P. Shvartsman, “Local approximations and intrinsic characterization of spaces of smooth functions on regular subsets of $mathbb{R}^{n}$”, Math. Nachr., 279:11 (2006), 1212–1241
- G. A. Kalyabin, “The intrinsic norming of the retractions of Sobolev spaces onto plain domains with the points of sharpness”, Abstracts of conference on functional spaces, approximation theory, nonlinear analysis in honor of S. M. Nikolskij, Moscow, 1995, 330
- V. S. Rychkov, “Linear extension operators for restrictions of function spaces to irregular open sets”, Studia Math., 140:2 (2000), 141–162
- D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996, xii+366 pp.
- P. W. Jones, “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math., 147:1-2 (1981), 71–88
- A. P. Calderon, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44:6 (1972), 563–582
- H. Triebel, The structure of functions, Monogr. Math., 97, Birkhäuser Verlag, Basel, 2001, xii+425 pp.
- E. T. Sawyer, “A characterization of a two-weight norm inequality for maximal operators”, Studia Math., 75:1 (1982), 1–11
- L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp.
- C. Cascante, J. M. Ortega, I. E. Verbitsky, “On $L_{p}$-$L_{q}$ trace inequalities”, J. London Math. Soc. (2), 74:2 (2006), 497–511
- Д. Гилбарг, Н. Трудингер, Эллиптические дифференциальные уравнения с частными производными второго порядка, Наука, М., 1989, 464 с.
- P. Hajlasz, P. Koskella, Sobolev met Poincare, Mem. Amer. Math. Soc., 145, no. 688, Amer. Math. Soc., Providence, RI, 2000, x+101 pp.
- P. Hajlasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415
- С. К. Водопьянов, “Монотонные функции и квазиконформные отображения на группах Карно”, Сиб. матем. журн., 37:6 (1996), 1269–1295
补充文件
