Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 216, № 2 (2025)

Обложка

Устойчивость по Ляпунову положения равновесия нелокального уравнения неразрывности

Авербух Ю.В., Волков А.М.

Аннотация

Статья посвящена развитию методов Ляпунова для анализа устойчивости положения равновесия динамической системы в пространстве вероятностных мер, задаваемой нелокальным уравнением неразрывности. Получены достаточные условия устойчивости, опирающиеся как на анализ поведения негладкой функции Ляпунова в окрестности положения равновесия, так и на исследование квадратичной формы, заданной на касательном пространстве к пространству вероятностных мер. Общие результаты проиллюстрированы исследованием устойчивости положения равновесия для градиентного потока в пространстве вероятностных мер и меры Гиббса для системы связанных математических маятников. Библиография: 28 названий.
Математический сборник. 2025;216(2):3-31
pages 3-31 views

Самые симметричные кубические поверхности

Викулова А.В.

Аннотация

В этой работе мы дадим классификацию наибольших групп автоморфизмов гладких кубических поверхностей над любыми полями. Более того, мы докажем, что над заданным полем гладкая кубическая поверхность с наибольшей группой автоморфизмов единственна с точностью до изоморфизма.Библиография: 19 названий.
Математический сборник. 2025;216(2):32-80
pages 32-80 views

Эллипсоиды Джона–Лёвнера и энтропия операторов-мультипликаторов на компактных однородных многообразиях ранга $1$

Кушпель А.К.

Аннотация

В работе представлен новый метод оценки энтропии, основанный на оценках объемов эллипсоидов Джона–Лёвнера, индуцированных собственными функциями оператора Лапласа–Бельтрами на компактных однородных многообразиях $\mathbb{M}^{d}$ ранга $1$. Этот подход дает точные порядки энтропии в ситуациях, где известные методы сталкиваются с трудностями фундаментального характера. В частности, мы вычисляем точные порядки энтропии классов Соболева $W_{p}^{\gamma}(\mathbb{M}^{d})$, $\gamma >0$, в $L_{q}(\mathbb{M}^{d})$, $1\leq q\leq p\leq \infty $.Библиография: 35 наименований.

Математический сборник. 2025;216(2):81-109
pages 81-109 views

Равномерная рациональная аппроксимация нечетного и четного преобразований Коши

Мардвилко Т.С.

Аннотация

В работе изучаются наилучшие равномерные рациональные приближения нечетного и четного преобразований Коши.Полученные результаты позволили найти слабую асимптотику наилучших равномерных рациональных приближений нечетного продолжения на $[-1,1]$ функции $x^{\alpha}$, $x\in[0,1]$, для всех $\alpha\in(0,+\infty)\setminus(2\mathbb N-1)$, дополнив тем самым результаты Н. С. Вячеславова. Сильная асимптотика наилучших рациональных приближений на $[0,1]$ этой функции и ее четного на $[-1,1]$ продолжения найдена Г. Шталем. Из полученных результатов следует, что наилучшие рациональные приближения четного и нечетного продолжений указанной функции при $\alpha\in(0,+\infty)\setminus\mathbb N$ имеют одинаковую слабую асимптотику.Библиография: 29 названий.

Математический сборник. 2025;216(2):110-127
pages 110-127 views

Свойства дискретного не более чем счетного объединения множеств в несимметричных пространствах

Царьков И.Г.

Аннотация

Показано, что не более чем счетное объединение непересекающихся множеств существования не является чебышёвским множеством. Охарактеризовано несимметричное линейное пространство, в котором каждое ограниченно компактное (аппроксимативно компактное) множествоявляется множеством существования.Библиография: 32 названия.

Математический сборник. 2025;216(2):128-144
pages 128-144 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».