John–Löwner ellipsoids and entropy of multiplier operators on rank $1$ compact homogeneous manifolds
- 作者: Kushpel' A.K.1
-
隶属关系:
- Department of Mathematics, Çankaya University, Ankara, Turkey
- 期: 卷 216, 编号 2 (2025)
- 页面: 81-109
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306679
- DOI: https://doi.org/10.4213/sm9656
- ID: 306679
如何引用文章
详细
We present a new method of the evaluation of entropy, which is based on volume estimates for John–Löwner ellipsoids induced by the eigenfunctions of Laplace–Beltrami operator on compact homogeneous manifolds $\mathbb{M}^{d}$ of rank $1$. This approach gives the sharp orders of entropy in the situations where the known methods meet difficulties of fundamental nature. In particular, we calculate the sharp orders of the entropy of the Sobolev classes $W_{p}^{\gamma }(\mathbb{M}^{d})$, $\gamma>0$, in $L_{q}(\mathbb{M}^{d})$, $1 \leq q \leq p \leq \infty$. Bibliography: 35 titles.
作者简介
Alexander Kushpel'
Department of Mathematics, Çankaya University, Ankara, Turkey
编辑信件的主要联系方式.
Email: kushpel@cankaya.edu.tr
Doctor of physico-mathematical sciences, Professor
参考
- М. Ш. Бирман, М. З. Соломяк, “Кусочно-полиномиальные приближения функций классов $W^alpha_p$”, Матем. сб., 73(115):3 (1967), 331–355
- A. Bonami, J. L. Clerc, “Sommes de Cesàro et multiplicateurs des developpements en harmoniques spheriques”, Trans. Amer. Math. Soc., 183 (1973), 223–263
- B. Bordin, A. K. Kushpel, J. Levesley, S. A. Tozoni, “Estimates of $n$-widths of Sobolev's classes on compact globally symmetric spaces of rank one”, J. Funct. Anal., 202:2 (2003), 307–326
- J. Bourgain, V. D. Milman, “New volume ratio properties for convex symmetric bodies in $mathbb{R}^{n}$”, Invent. Math., 88:2 (1987), 319–340
- E. Cartan, “Sur la determination d'un système orthogonal complet dans un espace de Riemann symetrique clos”, Rend. Circ. Mat. Palermo, 53 (1929), 217–252
- L. Danzer, D. Laugwitz, H. Lenz, “Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden”, Arch. Math. (Basel), 8 (1957), 214–219
- R. Gangolli, “Positive definite kernels on homogeneous spaces and certain stochastis processes related to Levy's Brownian motion of several parameters”, Ann. Inst. H. Poincare Sect. B (N.S.), 3:2 (1967), 121–226
- E. Gine M., “The addition formula for the eigenfunctions of the Laplacian”, Adv. Math., 18:1 (1975), 102–107
- F. Jarad, A. Kushpel, K. Taş, “On the optimality of the trigonometric system”, J. Complexity, 56 (2020), 101429, 12 pp.
- F. John, “Extremum problems with inequalities as subsidiary conditions”, Studies and essays, Presented to R. Courant on his 60th birthday, Jan. 8, 1948, Intersci. Publ., New York, 1948, 187–204
- С. Хелгасон, Дифференциальная геометрия и симметрические пространства, Мир, М., 1964, 533 с.
- S. Helgason, “The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds”, Acta Math., 113 (1965), 153–180
- Б. С. Кашин, В. Н. Темляков, “О наилучших $m$-членных приближениях и энтропии множеств в пространстве $L^1$”, Матем. заметки, 56:5 (1994), 57–86
- А. Н. Колмогоров, “О некоторых асимптотических характеристиках вполне ограниченных метрических пространств”, Докл. АН СССР, 108 (1956), 385–388
- А. К. Кушпель, “Оценки поперечников классов аналитических функций”, Укр. матем. журн., 41:4 (1989), 567–570
- А. К. Кушпель, “Оценки средних Леви и медиан некоторых распределений на сфере”, Ряды Фурье: теория и приложения (Каменец-Подольский, 1992), ИМ АН Украины, Киев, 1992, 49–53
- А. К. Кушпель, “Оценки бернштейновских поперечников и их аналогов”, Укр. матем. журн., 45:1 (1993), 54–59
- A. K. Kushpel, J. Levesley, K. Wilderotter, “On the asymptotically optimal rate of approximation of multiplier operators from $L_p$ into $L_q$”, Constr. Approx., 14:2 (1998), 169–185
- A. Kushpel, “Optimal cubature formulas on compact homogeneous manifolds”, J. Funct. Anal., 257:5 (2009), 1621–1629
- A. K. Kushpel, J. Levesley, S. A. Tozoni, “Estimates of $n$-widths of Besov classes on two-point homogeneous manifolds”, Math. Nachr., 282:5 (2009), 748–763
- A. Kushpel, S. A. Tozoni, “Entropy and widths of multiplier operators on two-point homogeneous spaces”, Constr. Approx., 35:2 (2012), 137–180
- A. Kushpel, R. L. B. Stabile, S. A. Tozoni, “Estimates for $n$-widths of sets of smooth functions on the torus $mathbb{T}^{d}$”, J. Approx. Theory, 183 (2014), 45–71
- А. К. Кушпель, “О константах Лебега”, Укр. матем. журн., 71:8 (2019), 1073–1081
- A. Kushpel, K. Taş, “The radii of sections of origin-symmetric convex bodies and their applications”, J. Complexity, 62 (2021), 101504, 21 pp.
- A. Kushpel, K. Taş, J. Levesley, “Widths and entropy of sets of smooth functions on compact homogeneous manifolds”, Turkish J. Math., 45:1 (2021), 167–184
- A. Kushpel, “The Lebesgue constants on projective spaces”, Turkish J. Math., 45:2 (2021), 856–863
- A. Kushpel, “Optimal recovery and volume estimates”, J. Complexity, 79 (2023), 101780, 15 pp.
- J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
- J. Marzo, J. Ortega-Cerdà, Uniformly bounded orthonormal polynomials on the sphere
- J. Marzo, J. Ortega-Cerdà, “Uniformly bounded orthonormal polynomials on the sphere”, Bull. Lond. Math. Soc., 47:5 (2015), 883–891
- J. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989, xiv+250 pp.
- Г. Сегe, Ортогональные многочлены, Физматгиз, М., 1962, 500 с.
- V. Temlyakov, “Entropy”, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, 321–386 pp.
- H. Triebel, “Relations between approximation numbers and entropy numbers”, J. Approx. Theory, 78:1 (1994), 112–116
- Hsien-Chung Wang, “Two-point homogeneous spaces”, Ann. of Math. (2), 55 (1952), 177–191
补充文件
