Properties of at most countable unions of pairwise disjoint sets in asymmetric spaces

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We show that an at most countable nonsingleton union of pairwise disjoint proximinal sets is not a Chebyshev set. We also characterize the asymmetric linear spaces where each boundedly compact (approximatively compact) set is proximinal.Bibliography: 32 titles.

Sobre autores

Igor' Tsar'kov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Autor responsável pela correspondência
Email: tsar@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor

Bibliografia

  1. V. Donjuan, N. Jonard-Perez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491
  2. Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp.
  3. L. M. Garcia-Raffi, S. Romaguera, E. A. Sanchez Perez, “On Hausdorff asymmetric normed linear spaces”, Houston J. Math., 29:6 (2003), 717–728
  4. В. М. Тихомиров, Г. Г. Магарил-Ильяев, Выпуклый анализ и его приложения, 3-е изд., испр., Книжный дом “Либроком”, М., 2011, 176 с.
  5. М. Г. Крейн, “$L$-проблема в абстрактном линейном нормированном пространстве”, О некоторых вопросах теории моментов, ГОНТИ, Харьков, 1938, 171–199
  6. H. König, “Sublineare Funktionale”, Arch. Math. (Basel), 23 (1972), 500–508
  7. H. König, “Sublinear functionals and conical measures”, Arch. Math. (Basel), 77:1 (2001), 56–64
  8. В. Ф. Бабенко, “Несимметричные приближения в пространствах суммируемых функций”, Укр. матем. журн., 34:4 (1982), 409–416
  9. Е. П. Долженко, Е. А. Севастьянов, “Аппроксимации со знакочувствительным весом (теоремы существования и единственности)”, Изв. РАН. Сер. матем., 62:6 (1998), 59–102
  10. Е. П. Долженко, Е. А. Севастьянов, “Аппроксимация со знакочувствительным весом (устойчивость, приложения к теории ужей и хаусдорфовым аппроксимациям)”, Изв. РАН. Сер. матем., 63:3 (1999), 77–118
  11. Л. Коллатц, В. Крабс, Теория приближений. Чебышевские приближения и их приложения, Наука, М., 1978, 272 с.
  12. R. C. Flagg, R. D. Kopperman, “The asymmetric topology of computer science”, Mathematical foundations of programming semantics (New Orleans, LA, 1993), Lecture Notes in Comput. Sci., 802, Springer, Berlin, 1993, 544–553
  13. П. А. Бородин, “Теорема Банаха–Мазура для пространств с несимметричной нормой и ее приложения в выпуклом анализе”, Матем. заметки, 69:3 (2001), 329–337
  14. G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529
  15. Г. Е. Иванов, М. С. Лопушански, “Аппроксимативные свойства слабо выпуклых множеств в пространствах с несимметричной полунормой”, Труды МФТИ, 4:4 (2012), 94–104
  16. Г. Е. Иванов, М. С. Лопушански, “О корректности задач аппроксимации и оптимизации для слабо выпуклых множеств и функций”, Фундамент. и прикл. матем., 18:5 (2013), 89–118
  17. А. Р. Алимов, “Теорема Банаха–Мазура для пространств с несимметричным расстоянием”, УМН, 58:2(350) (2003), 159–160
  18. А. Р. Алимов, “Выпуклость и монотонная линейная связность множеств с непрерывной метрической проекцией в трехмерных пространствах”, Тр. ИММ УрО РАН, 26, № 2, 2020, 28–46
  19. А. Р. Алимов, “Томографические характеризационные теоремы для солнц в трехмерных пространствах”, Тр. ИММ УрО РАН, 28, № 2, 2022, 45–55
  20. И. Г. Царьков, “Аппроксимативные свойства множеств и непрерывные выборки”, Матем. сб., 211:8 (2020), 132–157
  21. И. Г. Царьков, “Слабо монотонные множества и непрерывная выборка в несимметричных пространствах”, Матем. сб., 210:9 (2019), 129–152
  22. И. Г. Царьков, “$theta$-метрическая функция в задаче минимизации функционалов”, Изв. РАН. Сер. матем., 88:2 (2024), 184–205
  23. И. Г. Царьков, “Теоремы типа Куна–Таккера в конус-пространствах и линейных нормированных пространствах”, Матем. заметки, 114:6 (2023), 909–921
  24. И. Г. Царьков, “Непрерывные выборки в несимметричных пространствах”, Матем. сб., 209:4 (2018), 95–116
  25. И. Г. Царьков, “Непрерывные выборки из многозначных отображений и аппроксимация в несимметричных и полулинейных пространствах”, Изв. РАН. Сер. матем., 87:4 (2023), 205–224
  26. И. Г. Царьков, “Свойства монотонно линейно связных множеств”, Изв. РАН. Сер. матем., 85:2 (2021), 142–171
  27. И. Г. Царьков, “Равномерная выпуклость в несимметричных пространствах”, Матем. заметки, 110:5 (2021), 773–785
  28. A. R. Alimov, I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86, 15 pp.
  29. A. R. Alimov, I. G. Tsar'kov, “Chebyshev unions of planes, and their approximative and geometric properties”, J. Approx. Theory, 298 (2024), 106009, 12 pp.
  30. А. Р. Алимов, И. Г. Царьков, “Чебышeвские множества, являющиеся объединением плоскостей”, УМН, 79:2(476) (2024), 183–184
  31. V. Klee, “Dispersed Chebyshev sets and coverings by balls”, Math. Ann., 257:2 (1981), 251–260
  32. I. G. Tsar'kov, “Connectedness in asymmetric spaces”, J. Math. Anal. Appl., 527:1 (2023), 127381, 14 pp.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Tsar'kov I.G., 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».