Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 97, № 7-8 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Статьи

Каталитическое гидросилилирование циклоолефинов в присутствии комплексов переходных металлов (обзор)

Алентьев Д.А., Козлова М.А., Зайцев К.В.

Аннотация

В обзоре рассмотрены известные на данный момент в литературе реакции каталитического гидросилилирования циклоолефинов в присутствии катализаторов на основе комплексов переходных металлов, таких как платина, родий, кобальт, палладий, никель и др., а также особенности этих реакций: влияние природы циклоолефина и катализатора на реакционную способность, селективность образования различных продуктов и выход реакции. Обсуждается возможность стерео- и энантиоселективного синтеза кремнийуглеводородов с применением этих реакций, а также другие способы проведения гидросилилирования циклоолефинов (под действием кислот Льюиса, термическое и фотокаталитическое гидросилилирование). Показано, что наилучшая стерео- и энантиоселективность гидросилилирования циклоолефинов достигается в присутствии катализаторов на основе Pd с хиральными лигандами (P,N-лиганды на основе ферроцена, бинафтильные лиганды). Тем не менее гидросилилирование под действием комплексов переходных металлов по-прежнему остается недостаточно универсальным способом синтеза силанов с циклическими заместителями из неактивированных (не содержащих хлор) силанов, в отличие от радикального гидросилилирования.

Журнал прикладной химии. 2024;97(7-8):504-531
pages 504-531 views

Высокомолекулярные соединения и материалы на их основе

Полифункциональный модификатор на основе конденсированных соединений азота, фосфора и бора для огнетеплостойких эластомерных материалов

Каблов В.Ф., Кочетков В.Г., Кейбал Н.А., Новопольцева О.М., Крюкова Д.А., Уржумов Д.А.

Аннотация

Синтезировано элементоорганическое соединение на основе аминотриметиленфосфоновой кислоты, диэтиленгликоля и борной кислоты N(P(O)(OC2H4OC2H4OB(O~)2 )2)3. Полученный продукт за счет наличия атомов азота и фосфора проявляет адгезионную, термостабилизующую и антипирирующую активность. Исследована возможность применения полученного соединения в качестве модификатора, повышающего огнетеплозащитные характеристики эластомерных материалов, показано улучшение физико-механических показателей вулканизатов на основе СКЭПТ-40 (условная прочность при растяжении, относительное удлинение при разрыве, относительная остаточная деформация) и их стойкость к высокотемпературным воздействиям.

Журнал прикладной химии. 2024;97(7-8):532-539
pages 532-539 views

Твердые дисперсии фумаровой кислоты с поливинилпирролидоном К-12

Тимофеева В.В., Лебедева О.Е.

Аннотация

Предложено использовать для повышения растворимости фумаровой кислоты в воде подход, основанный на применении твердых дисперсий. Методом удаления растворителя получена твердая дисперсия фумаровой кислоты с поливинилпирролидоном К-12 и изучена ее растворимость. Применение данного технологического приема повысило растворимость фумаровой кислоты в 2.7 раза. Исследования, проведенные с помощью рентгенофазового анализа, инфракрасной спектроскопии и динамического светорассеяния, выявили предположительный механизм повышения растворимости, продемонстрировав возможность аморфизации фумаровой кислоты на стадии получения твердой дисперсии, солюбилизацию фумаровой кислоты полимером, наличие агрегатов в водном растворе дисперсии, свидетельствующих об образовании коллоидного раствора.

Журнал прикладной химии. 2024;97(7-8):540-544
pages 540-544 views

Аддитивный полимер на основе 5-дифенилметилсилил-замещенного норборнена: синтез и газотранспортные свойства

Андреянов Ф.А., Лунин А.О., Никифоров Р.Ю., Алентьев А.Ю., Бермешев М.В.

Аннотация

Изучена аддитивная полимеризация нового производного норборнена, содержащего две фенильных группы при кремниевом заместителе. Найдены условия полимеризации, позволяющие синтезировать высокомолекулярные продукты (Mw более 3 · 105) с выходом 75–90%. Полученные полимеры охарактеризованы спектроскопией ядерного магнитного резонанса, рентгенофазовым анализом, динамомеханическим анализом, термогравиметрическим анализом. Исследованы газотранспортные свойства полимера на основе (5-норборнен-2-метилокси)метилдифенилсилана, полученного путем аддитивной полимеризации. Показано, что данный полимер характеризуется высокой селективностью разделения по паре газов CO2 /CH4 (18.8).

Журнал прикладной химии. 2024;97(7-8):545-553
pages 545-553 views

Модифицированные микросферы из сшитого глутаральдегидом поливинилового спирта

Лазнев К.В., Игнатович Я.С., Рогачев А.А., Агабеков В.Е.

Аннотация

Микросферы диаметром 6.5 ± 2.5 мкм были получены путем смешивания эмульсий водных растворов поливинилового спирта и глутаральдегида в изооктане с добавками поверхностно-активных веществ и модифицированы путем обработки их в водной среде реагентами, взаимодействующими с альдегидными группами: гидроксидом аммония, пероксидом водорода и боргидридом натрия. Установлено, что боргидрид натрия инактивирует 83–90% альдегидных групп и придает микросферам отрицательный ζ-потенциал –59 мВ. Обработка пероксидом водорода приводит к увеличению количества карбоксильных групп на 25–29%, а гидроксидом аммония практически не изменяет инфракрасные спектры микросфер, но вызывает увеличение ζ-потенциала их поверхности на 24–29 мВ. При нагревании до 180°С количество альдегидных групп возрастает на сопоставимую величину у необработанных и обработанных боргидридом натрия микросфер, что свидетельствует о разрушении части сшивок поливинилспиртовой матрицы.

Журнал прикладной химии. 2024;97(7-8):554-558
pages 554-558 views

Композиционные материалы

Влияние размеров одностенных углеродных нанотрубок в составе композита с полистиролом на их электрическое сопротивление

Николаева М.Н.

Аннотация

Обнаружен эффект резкого уменьшения электрического сопротивления на отдельных участках поверхности одностенных углеродных нанотрубок (на 2–3 порядка величины) при уменьшении их линейных размеров в системах металл/полимерный композит/металл разной структуры. Углеродные нанотрубки были введены в композит в процессе сополимеризации со стиролом после предварительной модификации их поверхности кремнийсодержащим соединением 3-(триметоксисилил)пропилметакрилатом. Уменьшение сопротивления может объясняться переориентацией фрагментов углеродных нанотрубок относительно друг друга при изменении деформационных напряжений между ними и полимерной матрицей при измельчении материала, что приводит к изменению электронной структуры углеродных нанотрубок, введенных в полимерный композит в процессе синтеза.

Журнал прикладной химии. 2024;97(7-8):559-565
pages 559-565 views

Катализ

Гетерогенные родийсодержащие катализаторы гидроаминометилирования на основе гибридных органо-неорганических материалов

Горбунов Д.Н., Ненашева М.В., Теренина М.В., Синикова Н.А., Кардашева Ю.С.

Аннотация

Синтезированы гетерогенные катализаторы гидроаминометилирования на основе гибридного органо-неорганического материала, представляющего собой силикагель с привитыми полиаллиламинными группами. Носители получены путем модификации исходных материалов дифенилфосфином и 4-дифенилфосфинбензойной кислотой. Закрепление родиевых комплексов на поверхности модифицированных носителей осуществлено путем лигандного обмена. Активность катализаторов изучена на примере реакции гидроаминометилирования октена-1 в присутствии диметиламина. Установлено влияние типа растворителя, температуры в диапазоне 80–180°С, общего давления и состава синтез-газа, мольного соотношения олефин:диметиламин на выход целевых продуктов реакции. Продемонстрирована возможность многократного использования синтезированных катализаторов в реакции гидроаминометилирования линейных алкенов.

Журнал прикладной химии. 2024;97(7-8):566-574
pages 566-574 views

Влияние растворителя на гидропревращения терефталевой кислоты на оксидах молибдена и вольфрама

Мухтарова М., Голубева М.А.

Аннотация

Катализаторы на основе оксидов молибдена и вольфрама получены in situ из карбонилов соответствующих металлов в процессе гидропревращений терефталевой кислоты и исследованы методами рентгенофазового анализа и рентгеновской фотоэлектронной спектроскопии. Для проведения гидропревращений выбраны различные растворители, присутствие которых по-разному влияет на формирование катализатора и его активных центров, а также на превращения терефталевой кислоты. Среди неполярных растворителей выбран додекан, как один из наиболее часто используемых растворителей для деоксигенации, и тетралин — растворитель, обладающий H-донорными свойствами. Среди полярных растворителей выбран H-донорный растворитель этиленгликоль и вода — растворитель, наиболее соответствующий принципам «зеленой химии». Конверсия терефталевой кислоты при 350°C, начальном давлении водорода 5 МПа при использовании обоих катализаторов и проведении реакции в течение 6 ч превышает 85% во всех растворителях. Наибольшая селективность по ароматическим углеводородам достигается при использовании тетралина в качестве растворителя и WOx в качестве катализатора и составляет 97% при конверсии терефталевой кислоты 99%. При использовании воды в качестве растворителя наблюдается наименьшая селективность по ароматическим углеводородам (45–48%) как в присутствии MoOx, так и в присутствии WOx при конверсии терефталевой кислоты 85%.

Журнал прикладной химии. 2024;97(7-8):575-581
pages 575-581 views

Метод золь-гель горения как способ получения железосодержащих катализаторов гидрирования углекислого газа

Клоков С.В., Росляков С.И., Кустов А.Л., Московских Д.О., Савилов С.В.

Аннотация

Методом золь-гель горения получены железосодержащие катализаторы из смеси раствора нитрата железа и гексаметилентетрамина без и с добавлением сополимера акрилата натрия и акриламида. В синтезированных катализаторах присутствуют наночастицы размером 10–20 нм различного состава (железо, его оксиды, карбиды и нитрид). В катализаторе, полученном с добавлением сополимера, степень покрытия железосодержащих частиц углеродом выше, чем в катализаторе, полученном без добавления сополимера, что связано с расположением частиц в углеродной матрице катализатора и более плотной углеродной оболочкой вокруг железосодержащих частиц. Показано, что катализаторы проявляют активность в гидрировании CO2 при 30 атм при температуре 280–360°С.

Журнал прикладной химии. 2024;97(7-8):582-590
pages 582-590 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».