KINETIC REGULARITIES OF PLASMA-SOLUTION SYNTHESIS OF NICKEL OXIDE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of formation of insoluble nickel hydroxocompounds initiated by the action of direct current discharge of atmospheric pressure in air on Ni(NO3)2 · 6H2O aqueous solutions has been studied. It was found that these compounds are formed as colloidal systems only when the solution is the anode of the discharge. In the case when the solution serves as a cathode, the formation of colloidal solutions is not observed. The investigated range of solution concentrations was 20–60 mmol/L and discharge currents were 20–60 mA. It was found that the kinetics of Ni2+ ions concentration loss was concentration dependent (zero/first kinetic order of the reaction) and independent of the discharge current. The rate constants and rate of loss of Ni2+ ions, their conversion degrees were determined, and the energy efficiency of the ion conversion process was found. The conversion degree and energy efficiency depended on the discharge current and initial concentration and were 4–25% and 0.1–0.5 ions per 100 eV, respectively. X-ray diffraction studies showed that the precipitates formed were Ni(OH)2 powder, and its calcination leads to the formation of crystalline β-NiO.

About the authors

K. V. Smirnova

Ivanovo State University of Chemistry and Technology

Email: shutov@isuct.ru
Ivanovo, Russia

A. V. Sungurova

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

A. N. Ivanov

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

D. A. Shutov

Ivanovo State University of Chemistry and Technology

Email: shutov@isuct.ru
Ivanovo, Russia

V. V. Rybkin

Ivanovo State University of Chemistry and Technology

Email: rybkin@isuct.ru
Ivanovo, Russia

P. A. Ignateva

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

References

  1. He J., Lindström H., Hagfeldt A., Lindquist S.E. // J. Phys. Chem. B. 1999. V. 103. № 42. P. 8940; https://doi.org/10.1021/jp991681r
  2. Hotovy I., Huran J., Siess L. // Sens. Actuators B Chem. 1999. V. 57. № 1-3. P. 147; https://doi.org/10.1016/S0042-207X(00)00182-2
  3. Tao D., Wei F. // Mater. Lett. 2004. V. 58. P. 3226; https://doi.org/10.1016/j.matlet.2004.06.015
  4. Shibli S.M.A., Beenakumari K.S., Suma N.D. // Biosens. Bioelectron. 2006. V. 22. № 5. P. 633; https://doi.org/10.1016/j.bios.2006.01.020
  5. Mu Y., Jia D., He Y., Miao Y., Wu H.L. // Biosens. Bioelectron, 2011. V. 26. № 6. P. 2948; https://doi.org/10.1016/j.bios.2010.11.042
  6. Jiao Z., Wu M., Qin Z., Xu H. // Nanotechnology. 2003. V. 14. № 4. P. 458; https://doi.org/10.1088/0957-4484/14/4/310
  7. Verma C., Ebenso E.E., Quraishi M.A. // J. Mol. Liq. 2019. V. 276. P. 826; https://doi.org/10.1016/j.molliq.2018.12.063
  8. Mai Y.J, Shi S.J., Zhang D., Lu Y., Gu C.D., Tu J.P. // J. Power Sources. 2012. V. 204. P. 155; https://doi.org/10.1016/j.jpowsour.2011.12.038
  9. Sun X., Wang G., Hwang J.Y., Lian J. // J. Mater. Chem. 2011. V. 21. № 41. P. 16581; https://doi.org/10.1039/C1JM12734A
  10. Ichiyanagi Y., Wakabayashi N., Yamazaki J., Yamada S., Kimishima Y., Komatsu E., Tajima H. // Phys. B: Condens. Matter. 2003. V. 329. P. 862; https://doi.org/10.1016/S0921-4526(02)02578-4
  11. Kalaie M.R., Youzbashi A.A., Meshkot M.A., Hosseini-Nasab F. // Appl. Nanosci. 2016. V. 6. № 6. P. 789; https://doi.org/10.1007/s13204-015-0498-3
  12. Carnes C.L., Klabunde K.J. // J. Mol. Catal A Chem. 2003. V. 194. № 1–2. P. 227; https://doi.org/10.1016/S1381-1169(02)00525-3
  13. Kirumakki S.R., Shpeizer B.G, Sagar G.V, Chary K.V.R. // J. Catal. 2006. V. 242. № 2. P. 319; https://doi.org/10.1016/j.jcat.2006.06.014
  14. Nitta Y., Sekine F., Sasaki J., Imanaka T., Teranishi S. // J. Catal. 1983. V. 79. № 1. P. 211; https://doi.org/10.1016/0021-9517(83)90305-6
  15. Fan Q., Liu Y., Zheng Y., Yan W. // Front. Chem. Sci. Eng. 2008. V. 2. № 1. P. 63; https://doi.org/10.1007/s11705-008-0013-4
  16. Nail B.A., Fields J.M., Zhao J., Wang J., Greaney M.J., Brutchey R.L., Osterloh F.E. // ACS Nano. 2015. V. 9. № 5. P. 5135; https://doi.org/10.1021/acsnano.5b00435
  17. Liu K.C., Anderson M.A. // J. Electrochem. Soc. 1996. V. 143. P. 124; https://doi.org/10.1149/1.1836396
  18. Wang Y.D., Ma C.L., Sun X.D., Li H.D. // Inorg. Chem. Commun. 2002. V. 5. P. 751; https://doi.org/10.1016/S1387-7003(02)00546-4
  19. Xiang L., Deng X.Y., Jin Y. // Scripta Mater. 2002. V. 47. P. 219; https://doi.org/10.1016/S1359-6462(02)00108-2
  20. Deki S., Yanagimito H., Hiraoka S. // Chem. Mater. 2003. V. 15. P. 4916; https://doi.org/10.1021/cm021754a
  21. Liu S.F., Wu C.Y., Han X.Z. // Chin. J. Inorg. Chem. 2003. V. 19. P. 624.
  22. Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. № 12. P. 112; https://doi.org/10.6060/ivkkt.20226512.6743
  23. Shutov D.A., Smirnova K.V., Gromov M.V., Rybkin V.V., Ivanov A.N. // Plasma Chem. Plasma Process. 2018. V. 38. № 1. P. 107; https://doi.org/10.1007/s11090-017-9856-0
  24. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. // J. Appl. Cryst. 2015. V. 48. № 2. P. 598 (2015); https://doi.org/10.1107/S1600576715002319
  25. Grazulis S., Daskevic A., Merkys A., Chateigner D., Lutterotti L., Quiros M. et al. // Nucl. Acids Res. 2012. V. 40. № D1. P. D420; https://doi.org/10.1093/nar/gkr900
  26. Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133; https://doi.org/10.1007/s11090-014-9583-8
  27. Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. № 1. P. 21; https://doi.org/10.1007/s11090-009-9202-2
  28. Lurie Ju. Handbook of Analytical Chemistry. Mir. Moscow. 1978.
  29. Shutov D.A., Smirrnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. № 3. P. 557; https://doi.org/10.1007/s11090-023-10322-1
  30. Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: Appl. Phys. 2022. V. 55. № 34. P. 345206; https://doi.org/10.1088/1361-6463/ac74f8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».