KINETIC REGULARITIES OF PLASMA-SOLUTION SYNTHESIS OF NICKEL OXIDE
- Autores: Smirnova K.V.1, Sungurova A.V.1, Ivanov A.N.1, Shutov D.A.1, Rybkin V.V.1, Ignateva P.A.1
-
Afiliações:
- Ivanovo State University of Chemistry and Technology
- Edição: Volume 59, Nº 2 (2025)
- Páginas: 129-135
- Seção: PLASMA CHEMISTRY
- URL: https://bakhtiniada.ru/0023-1193/article/view/304495
- DOI: https://doi.org/10.31857/S0023119325020094
- EDN: https://elibrary.ru/amhmrh
- ID: 304495
Citar
Resumo
Palavras-chave
Sobre autores
K. Smirnova
Ivanovo State University of Chemistry and Technology
Email: shutov@isuct.ru
Ivanovo, Russia
A. Sungurova
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
A. Ivanov
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
D. Shutov
Ivanovo State University of Chemistry and Technology
Email: shutov@isuct.ru
Ivanovo, Russia
V. Rybkin
Ivanovo State University of Chemistry and Technology
Email: rybkin@isuct.ru
Ivanovo, Russia
P. Ignateva
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
Bibliografia
- He J., Lindström H., Hagfeldt A., Lindquist S.E. // J. Phys. Chem. B. 1999. V. 103. № 42. P. 8940; https://doi.org/10.1021/jp991681r
- Hotovy I., Huran J., Siess L. // Sens. Actuators B Chem. 1999. V. 57. № 1-3. P. 147; https://doi.org/10.1016/S0042-207X(00)00182-2
- Tao D., Wei F. // Mater. Lett. 2004. V. 58. P. 3226; https://doi.org/10.1016/j.matlet.2004.06.015
- Shibli S.M.A., Beenakumari K.S., Suma N.D. // Biosens. Bioelectron. 2006. V. 22. № 5. P. 633; https://doi.org/10.1016/j.bios.2006.01.020
- Mu Y., Jia D., He Y., Miao Y., Wu H.L. // Biosens. Bioelectron, 2011. V. 26. № 6. P. 2948; https://doi.org/10.1016/j.bios.2010.11.042
- Jiao Z., Wu M., Qin Z., Xu H. // Nanotechnology. 2003. V. 14. № 4. P. 458; https://doi.org/10.1088/0957-4484/14/4/310
- Verma C., Ebenso E.E., Quraishi M.A. // J. Mol. Liq. 2019. V. 276. P. 826; https://doi.org/10.1016/j.molliq.2018.12.063
- Mai Y.J, Shi S.J., Zhang D., Lu Y., Gu C.D., Tu J.P. // J. Power Sources. 2012. V. 204. P. 155; https://doi.org/10.1016/j.jpowsour.2011.12.038
- Sun X., Wang G., Hwang J.Y., Lian J. // J. Mater. Chem. 2011. V. 21. № 41. P. 16581; https://doi.org/10.1039/C1JM12734A
- Ichiyanagi Y., Wakabayashi N., Yamazaki J., Yamada S., Kimishima Y., Komatsu E., Tajima H. // Phys. B: Condens. Matter. 2003. V. 329. P. 862; https://doi.org/10.1016/S0921-4526(02)02578-4
- Kalaie M.R., Youzbashi A.A., Meshkot M.A., Hosseini-Nasab F. // Appl. Nanosci. 2016. V. 6. № 6. P. 789; https://doi.org/10.1007/s13204-015-0498-3
- Carnes C.L., Klabunde K.J. // J. Mol. Catal A Chem. 2003. V. 194. № 1–2. P. 227; https://doi.org/10.1016/S1381-1169(02)00525-3
- Kirumakki S.R., Shpeizer B.G, Sagar G.V, Chary K.V.R. // J. Catal. 2006. V. 242. № 2. P. 319; https://doi.org/10.1016/j.jcat.2006.06.014
- Nitta Y., Sekine F., Sasaki J., Imanaka T., Teranishi S. // J. Catal. 1983. V. 79. № 1. P. 211; https://doi.org/10.1016/0021-9517(83)90305-6
- Fan Q., Liu Y., Zheng Y., Yan W. // Front. Chem. Sci. Eng. 2008. V. 2. № 1. P. 63; https://doi.org/10.1007/s11705-008-0013-4
- Nail B.A., Fields J.M., Zhao J., Wang J., Greaney M.J., Brutchey R.L., Osterloh F.E. // ACS Nano. 2015. V. 9. № 5. P. 5135; https://doi.org/10.1021/acsnano.5b00435
- Liu K.C., Anderson M.A. // J. Electrochem. Soc. 1996. V. 143. P. 124; https://doi.org/10.1149/1.1836396
- Wang Y.D., Ma C.L., Sun X.D., Li H.D. // Inorg. Chem. Commun. 2002. V. 5. P. 751; https://doi.org/10.1016/S1387-7003(02)00546-4
- Xiang L., Deng X.Y., Jin Y. // Scripta Mater. 2002. V. 47. P. 219; https://doi.org/10.1016/S1359-6462(02)00108-2
- Deki S., Yanagimito H., Hiraoka S. // Chem. Mater. 2003. V. 15. P. 4916; https://doi.org/10.1021/cm021754a
- Liu S.F., Wu C.Y., Han X.Z. // Chin. J. Inorg. Chem. 2003. V. 19. P. 624.
- Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. № 12. P. 112; https://doi.org/10.6060/ivkkt.20226512.6743
- Shutov D.A., Smirnova K.V., Gromov M.V., Rybkin V.V., Ivanov A.N. // Plasma Chem. Plasma Process. 2018. V. 38. № 1. P. 107; https://doi.org/10.1007/s11090-017-9856-0
- Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. // J. Appl. Cryst. 2015. V. 48. № 2. P. 598 (2015); https://doi.org/10.1107/S1600576715002319
- Grazulis S., Daskevic A., Merkys A., Chateigner D., Lutterotti L., Quiros M. et al. // Nucl. Acids Res. 2012. V. 40. № D1. P. D420; https://doi.org/10.1093/nar/gkr900
- Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133; https://doi.org/10.1007/s11090-014-9583-8
- Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. № 1. P. 21; https://doi.org/10.1007/s11090-009-9202-2
- Lurie Ju. Handbook of Analytical Chemistry. Mir. Moscow. 1978.
- Shutov D.A., Smirrnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. № 3. P. 557; https://doi.org/10.1007/s11090-023-10322-1
- Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: Appl. Phys. 2022. V. 55. № 34. P. 345206; https://doi.org/10.1088/1361-6463/ac74f8
Arquivos suplementares
