KINETIC REGULARITIES OF PLASMA-SOLUTION SYNTHESIS OF NICKEL OXIDE
- 作者: Smirnova K.V.1, Sungurova A.V.1, Ivanov A.N.1, Shutov D.A.1, Rybkin V.V.1, Ignateva P.A.1
-
隶属关系:
- Ivanovo State University of Chemistry and Technology
- 期: 卷 59, 编号 2 (2025)
- 页面: 129-135
- 栏目: PLASMA CHEMISTRY
- URL: https://bakhtiniada.ru/0023-1193/article/view/304495
- DOI: https://doi.org/10.31857/S0023119325020094
- EDN: https://elibrary.ru/amhmrh
- ID: 304495
如何引用文章
详细
关键词
作者简介
K. Smirnova
Ivanovo State University of Chemistry and Technology
Email: shutov@isuct.ru
Ivanovo, Russia
A. Sungurova
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
A. Ivanov
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
D. Shutov
Ivanovo State University of Chemistry and Technology
Email: shutov@isuct.ru
Ivanovo, Russia
V. Rybkin
Ivanovo State University of Chemistry and Technology
Email: rybkin@isuct.ru
Ivanovo, Russia
P. Ignateva
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
参考
- He J., Lindström H., Hagfeldt A., Lindquist S.E. // J. Phys. Chem. B. 1999. V. 103. № 42. P. 8940; https://doi.org/10.1021/jp991681r
- Hotovy I., Huran J., Siess L. // Sens. Actuators B Chem. 1999. V. 57. № 1-3. P. 147; https://doi.org/10.1016/S0042-207X(00)00182-2
- Tao D., Wei F. // Mater. Lett. 2004. V. 58. P. 3226; https://doi.org/10.1016/j.matlet.2004.06.015
- Shibli S.M.A., Beenakumari K.S., Suma N.D. // Biosens. Bioelectron. 2006. V. 22. № 5. P. 633; https://doi.org/10.1016/j.bios.2006.01.020
- Mu Y., Jia D., He Y., Miao Y., Wu H.L. // Biosens. Bioelectron, 2011. V. 26. № 6. P. 2948; https://doi.org/10.1016/j.bios.2010.11.042
- Jiao Z., Wu M., Qin Z., Xu H. // Nanotechnology. 2003. V. 14. № 4. P. 458; https://doi.org/10.1088/0957-4484/14/4/310
- Verma C., Ebenso E.E., Quraishi M.A. // J. Mol. Liq. 2019. V. 276. P. 826; https://doi.org/10.1016/j.molliq.2018.12.063
- Mai Y.J, Shi S.J., Zhang D., Lu Y., Gu C.D., Tu J.P. // J. Power Sources. 2012. V. 204. P. 155; https://doi.org/10.1016/j.jpowsour.2011.12.038
- Sun X., Wang G., Hwang J.Y., Lian J. // J. Mater. Chem. 2011. V. 21. № 41. P. 16581; https://doi.org/10.1039/C1JM12734A
- Ichiyanagi Y., Wakabayashi N., Yamazaki J., Yamada S., Kimishima Y., Komatsu E., Tajima H. // Phys. B: Condens. Matter. 2003. V. 329. P. 862; https://doi.org/10.1016/S0921-4526(02)02578-4
- Kalaie M.R., Youzbashi A.A., Meshkot M.A., Hosseini-Nasab F. // Appl. Nanosci. 2016. V. 6. № 6. P. 789; https://doi.org/10.1007/s13204-015-0498-3
- Carnes C.L., Klabunde K.J. // J. Mol. Catal A Chem. 2003. V. 194. № 1–2. P. 227; https://doi.org/10.1016/S1381-1169(02)00525-3
- Kirumakki S.R., Shpeizer B.G, Sagar G.V, Chary K.V.R. // J. Catal. 2006. V. 242. № 2. P. 319; https://doi.org/10.1016/j.jcat.2006.06.014
- Nitta Y., Sekine F., Sasaki J., Imanaka T., Teranishi S. // J. Catal. 1983. V. 79. № 1. P. 211; https://doi.org/10.1016/0021-9517(83)90305-6
- Fan Q., Liu Y., Zheng Y., Yan W. // Front. Chem. Sci. Eng. 2008. V. 2. № 1. P. 63; https://doi.org/10.1007/s11705-008-0013-4
- Nail B.A., Fields J.M., Zhao J., Wang J., Greaney M.J., Brutchey R.L., Osterloh F.E. // ACS Nano. 2015. V. 9. № 5. P. 5135; https://doi.org/10.1021/acsnano.5b00435
- Liu K.C., Anderson M.A. // J. Electrochem. Soc. 1996. V. 143. P. 124; https://doi.org/10.1149/1.1836396
- Wang Y.D., Ma C.L., Sun X.D., Li H.D. // Inorg. Chem. Commun. 2002. V. 5. P. 751; https://doi.org/10.1016/S1387-7003(02)00546-4
- Xiang L., Deng X.Y., Jin Y. // Scripta Mater. 2002. V. 47. P. 219; https://doi.org/10.1016/S1359-6462(02)00108-2
- Deki S., Yanagimito H., Hiraoka S. // Chem. Mater. 2003. V. 15. P. 4916; https://doi.org/10.1021/cm021754a
- Liu S.F., Wu C.Y., Han X.Z. // Chin. J. Inorg. Chem. 2003. V. 19. P. 624.
- Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. № 12. P. 112; https://doi.org/10.6060/ivkkt.20226512.6743
- Shutov D.A., Smirnova K.V., Gromov M.V., Rybkin V.V., Ivanov A.N. // Plasma Chem. Plasma Process. 2018. V. 38. № 1. P. 107; https://doi.org/10.1007/s11090-017-9856-0
- Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. // J. Appl. Cryst. 2015. V. 48. № 2. P. 598 (2015); https://doi.org/10.1107/S1600576715002319
- Grazulis S., Daskevic A., Merkys A., Chateigner D., Lutterotti L., Quiros M. et al. // Nucl. Acids Res. 2012. V. 40. № D1. P. D420; https://doi.org/10.1093/nar/gkr900
- Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133; https://doi.org/10.1007/s11090-014-9583-8
- Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. № 1. P. 21; https://doi.org/10.1007/s11090-009-9202-2
- Lurie Ju. Handbook of Analytical Chemistry. Mir. Moscow. 1978.
- Shutov D.A., Smirrnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. № 3. P. 557; https://doi.org/10.1007/s11090-023-10322-1
- Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: Appl. Phys. 2022. V. 55. № 34. P. 345206; https://doi.org/10.1088/1361-6463/ac74f8
补充文件
