KINETIC REGULARITIES OF PLASMA-SOLUTION SYNTHESIS OF NICKEL OXIDE
- Авторлар: Smirnova K.V.1, Sungurova A.V.1, Ivanov A.N.1, Shutov D.A.1, Rybkin V.V.1, Ignateva P.A.1
-
Мекемелер:
- Ivanovo State University of Chemistry and Technology
- Шығарылым: Том 59, № 2 (2025)
- Беттер: 129-135
- Бөлім: PLASMA CHEMISTRY
- URL: https://bakhtiniada.ru/0023-1193/article/view/304495
- DOI: https://doi.org/10.31857/S0023119325020094
- EDN: https://elibrary.ru/amhmrh
- ID: 304495
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
K. Smirnova
Ivanovo State University of Chemistry and Technology
Email: shutov@isuct.ru
Ivanovo, Russia
A. Sungurova
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
A. Ivanov
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
D. Shutov
Ivanovo State University of Chemistry and Technology
Email: shutov@isuct.ru
Ivanovo, Russia
V. Rybkin
Ivanovo State University of Chemistry and Technology
Email: rybkin@isuct.ru
Ivanovo, Russia
P. Ignateva
Ivanovo State University of Chemistry and TechnologyIvanovo, Russia
Әдебиет тізімі
- He J., Lindström H., Hagfeldt A., Lindquist S.E. // J. Phys. Chem. B. 1999. V. 103. № 42. P. 8940; https://doi.org/10.1021/jp991681r
- Hotovy I., Huran J., Siess L. // Sens. Actuators B Chem. 1999. V. 57. № 1-3. P. 147; https://doi.org/10.1016/S0042-207X(00)00182-2
- Tao D., Wei F. // Mater. Lett. 2004. V. 58. P. 3226; https://doi.org/10.1016/j.matlet.2004.06.015
- Shibli S.M.A., Beenakumari K.S., Suma N.D. // Biosens. Bioelectron. 2006. V. 22. № 5. P. 633; https://doi.org/10.1016/j.bios.2006.01.020
- Mu Y., Jia D., He Y., Miao Y., Wu H.L. // Biosens. Bioelectron, 2011. V. 26. № 6. P. 2948; https://doi.org/10.1016/j.bios.2010.11.042
- Jiao Z., Wu M., Qin Z., Xu H. // Nanotechnology. 2003. V. 14. № 4. P. 458; https://doi.org/10.1088/0957-4484/14/4/310
- Verma C., Ebenso E.E., Quraishi M.A. // J. Mol. Liq. 2019. V. 276. P. 826; https://doi.org/10.1016/j.molliq.2018.12.063
- Mai Y.J, Shi S.J., Zhang D., Lu Y., Gu C.D., Tu J.P. // J. Power Sources. 2012. V. 204. P. 155; https://doi.org/10.1016/j.jpowsour.2011.12.038
- Sun X., Wang G., Hwang J.Y., Lian J. // J. Mater. Chem. 2011. V. 21. № 41. P. 16581; https://doi.org/10.1039/C1JM12734A
- Ichiyanagi Y., Wakabayashi N., Yamazaki J., Yamada S., Kimishima Y., Komatsu E., Tajima H. // Phys. B: Condens. Matter. 2003. V. 329. P. 862; https://doi.org/10.1016/S0921-4526(02)02578-4
- Kalaie M.R., Youzbashi A.A., Meshkot M.A., Hosseini-Nasab F. // Appl. Nanosci. 2016. V. 6. № 6. P. 789; https://doi.org/10.1007/s13204-015-0498-3
- Carnes C.L., Klabunde K.J. // J. Mol. Catal A Chem. 2003. V. 194. № 1–2. P. 227; https://doi.org/10.1016/S1381-1169(02)00525-3
- Kirumakki S.R., Shpeizer B.G, Sagar G.V, Chary K.V.R. // J. Catal. 2006. V. 242. № 2. P. 319; https://doi.org/10.1016/j.jcat.2006.06.014
- Nitta Y., Sekine F., Sasaki J., Imanaka T., Teranishi S. // J. Catal. 1983. V. 79. № 1. P. 211; https://doi.org/10.1016/0021-9517(83)90305-6
- Fan Q., Liu Y., Zheng Y., Yan W. // Front. Chem. Sci. Eng. 2008. V. 2. № 1. P. 63; https://doi.org/10.1007/s11705-008-0013-4
- Nail B.A., Fields J.M., Zhao J., Wang J., Greaney M.J., Brutchey R.L., Osterloh F.E. // ACS Nano. 2015. V. 9. № 5. P. 5135; https://doi.org/10.1021/acsnano.5b00435
- Liu K.C., Anderson M.A. // J. Electrochem. Soc. 1996. V. 143. P. 124; https://doi.org/10.1149/1.1836396
- Wang Y.D., Ma C.L., Sun X.D., Li H.D. // Inorg. Chem. Commun. 2002. V. 5. P. 751; https://doi.org/10.1016/S1387-7003(02)00546-4
- Xiang L., Deng X.Y., Jin Y. // Scripta Mater. 2002. V. 47. P. 219; https://doi.org/10.1016/S1359-6462(02)00108-2
- Deki S., Yanagimito H., Hiraoka S. // Chem. Mater. 2003. V. 15. P. 4916; https://doi.org/10.1021/cm021754a
- Liu S.F., Wu C.Y., Han X.Z. // Chin. J. Inorg. Chem. 2003. V. 19. P. 624.
- Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. № 12. P. 112; https://doi.org/10.6060/ivkkt.20226512.6743
- Shutov D.A., Smirnova K.V., Gromov M.V., Rybkin V.V., Ivanov A.N. // Plasma Chem. Plasma Process. 2018. V. 38. № 1. P. 107; https://doi.org/10.1007/s11090-017-9856-0
- Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. // J. Appl. Cryst. 2015. V. 48. № 2. P. 598 (2015); https://doi.org/10.1107/S1600576715002319
- Grazulis S., Daskevic A., Merkys A., Chateigner D., Lutterotti L., Quiros M. et al. // Nucl. Acids Res. 2012. V. 40. № D1. P. D420; https://doi.org/10.1093/nar/gkr900
- Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. № 1. P. 133; https://doi.org/10.1007/s11090-014-9583-8
- Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. № 1. P. 21; https://doi.org/10.1007/s11090-009-9202-2
- Lurie Ju. Handbook of Analytical Chemistry. Mir. Moscow. 1978.
- Shutov D.A., Smirrnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. № 3. P. 557; https://doi.org/10.1007/s11090-023-10322-1
- Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J. Phys. D: Appl. Phys. 2022. V. 55. № 34. P. 345206; https://doi.org/10.1088/1361-6463/ac74f8
Қосымша файлдар
