Correction of Knee Flexion Contracture in Children With Cerebral Palsy by Femoral Extension Osteotomy: Evaluation of the Sagittal Profile

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Knee flexion contracture is one of the most common deformities in children with cerebral palsy, significantly affecting the patients’ gait, energy expenditure, verticalization, and quality of life. Knee flexion contracture can be corrected using either soft tissue procedures (hamstring lengthening) or bony interventions (femoral extension osteotomies). Soft tissue procedures are considered less invasive and are justified based on the underlying pathology. Some studies have reported their effect on sagittal balance, specifically an increase in anterior pelvic tilt. Femoral extension osteotomies have been regarded as sagittally neutral; however, most studies included them as part of combined interventions, which precludes assessment of the isolated effect of the osteotomy itself. This emphasizes the importance of investigating the impact of femoral extension osteotomies on global sagittal alignment in children with cerebral palsy.

AIM: This study aimed to evaluate the effect of corrective femoral extension osteotomy on sagittal spinopelvic parameters in children with cerebral palsy and knee flexion contracture.

METHODS: The study included 14 patients with cerebral palsy treated at the Turner National Medical Research Center for Children’s Orthopedics between 2022 and 2025. The patients underwent corrective supracondylar femoral extension osteotomy with plate fixation with angular stability (LCP PHP 90°). Overall, 26 osteotomies were performed. In three cases, a newly developed implant designed for patients with cerebral palsy with reduced bone density was used. Clinical outcomes (i.e., active extension deficit, contracture degree, and popliteal angle) and radiological parameters (i.e., pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis, thoracic kyphosis, and sagittal vertical axis) were assessed preoperatively and at 6 months postoperatively.

RESULTS: Significant correction of contracture and improvement in active knee extension were observed. Among the radiological parameters, only lumbar lordosis showed a significant change (+4.3° ± 13.5°, p = 0.049). Other parameters remained unchanged. No associations were found between the changes in clinical and radiological parameters.

CONCLUSION: Femoral extension osteotomy is an effective method for correcting knee flexion contracture in children with cerebral palsy and does not cause global sagittal alignment disruption. The increase in lumbar lordosis is adaptive in nature and is not associated with signs of decompensation. Initial experience with the newly designed implant demonstrated technical reliability of fixation and promising applicability in patients with reduced bone density.

About the authors

Vladimir A. Novikov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN-code: 2773-1027

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Valery V. Umnov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN-code: 6824-5853

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Dmitry S. Zharkov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: striker5621@gmail.com
ORCID iD: 0000-0002-8027-1593
SPIN-code: 5908-7774

MD

Russian Federation, Saint Petersburg

Dmitry V. Umnov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN-code: 1376-7998

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Alina R. Mustafaeva

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: alina.mys23@yandex.ru
ORCID iD: 0009-0003-4108-7317
SPIN-code: 1099-7340

MD

Russian Federation, Saint Petersburg

References

  1. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.
  2. Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol. 2008;50(10):744–750. doi: 10.1111/j.1469-8749.2008.03089.x
  3. Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. doi: 10.1038/nrdp.2015.82
  4. Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Transl Pediatr. 2020;9(Suppl 1):S125–S135. doi: 10.21037/tp.2019.09.08
  5. Rodda JM, Graham HK, Carson L, et al. Sagittal gait patterns in spastic diplegia. J Bone Joint Surg Br. 2004;86(2):251–258. doi: 10.1302/0301-620X.86B2.14034
  6. Novacheck TF, Gage JR. Orthopedic management of spasticity in cerebral palsy. Childs Nerv Syst. 2007;23(9):1015–1031. doi: 10.1007/s00381-007-0371-1 EDN: WZCTOK
  7. Yngve DA. Recurvatum of the knee in cerebral palsy: a review. Cureus. 2021;13(4):e14408. doi: 10.7759/cureus.14408 EDN: DZJWHO
  8. Le Huec JC, Saddiki R, Franke J, et al. Equilibrium of the human body and the gravity line: the basics. Eur Spine J. 2011;20(Suppl 5):558–563. doi: 10.1007/s00586-011-1939-7 EDN: JPBPDC
  9. Suh SW, Suh DH, Kim JW, et al. Analysis of sagittal spinopelvic parameters in cerebral palsy. Spine J. 2013;13(8):882–888. doi: 10.1016/j.spinee.2013.02.011
  10. Deceuninck J, Bernard JC, Combey A, et al. Sagittal X-ray parameters in walking or ambulating children with cerebral palsy. Ann Phys Rehabil Med. 2013;56(2):123–133. doi: 10.1016/j.rehab.2012.11.004
  11. Suh DH, Hong JY, Suh SW, et al. Analysis of hip dysplasia and spinopelvic alignment in cerebral palsy. Spine J. 2014;14(11):2716–2723. doi: 10.1016/j.spinee.2014.03.025
  12. DeLuca PA, Ounpuu S, Davis RB, Walsh JH. Effect of hamstring and psoas lengthening on pelvic tilt in patients with spastic diplegic cerebral palsy. J Pediatr Orthop. 1998;18(6):712–718. doi: 10.1097/01241398-199811000-00003
  13. Chang WN, Tsirikos AI, Miller F, et al. Distal hamstring lengthening in ambulatory children with cerebral palsy: primary versus revision procedures. Gait Posture. 2004;19(3):298–304. doi: 10.1016/S0966-6362(03)00070-5
  14. Gordon AB, Baird GO, McMulkin ML, et al. Gait analysis outcomes of percutaneous medial hamstring tenotomies in children with cerebral palsy. J Pediatr Orthop. 2008;28(3):324–329. doi: 10.1097/BPO.0b013e31816b11d3
  15. Rethlefsen SA, Yasmeh S, Wren TAL, Kay RM. Repeat hamstring lengthening for crouch gait in children with cerebral palsy. J Pediatr Orthop. 2013;33(5):501–504. doi: 10.1097/BPO.0b013e318288b3e7
  16. Nazareth A, Rethlefsen S, Sousa TC, et al. Percutaneous hamstring lengthening surgery is as effective as open lengthening in children with cerebral palsy. J Pediatr Orthop. 2019;39(7):366–371. doi: 10.1097/BPO.0000000000000924
  17. White H, Wallace J, Walker J, et al. Hamstring lengthening in females with cerebral palsy have greater effect than in males. J Pediatr Orthop B. 2019;28(4):337–344. doi: 10.1097/BPB.0000000000000633
  18. Wijesekera MPC, Wilson NC, Trinca D, et al. Pelvic tilt changes after hamstring lengthening in children with cerebral palsy. J Pediatr Orthop. 2019;39(5):e380–e385. doi: 10.1097/BPO.0000000000001326
  19. Zwick EB, Saraph V, Zwick G, et al. Medial hamstring lengthening in the presence of hip flexor tightness in spastic diplegia. Gait Posture. 2002;16(3):288–296. doi: 10.1016/S0966-6362(02)00022-X
  20. Mansour T, Derienne J, Daher M,et al. Is percutaneous medial hamstring myofascial lengthening as anatomically effective and safe as the open procedure? J Child Orthop. 2017;11(1):15–19. doi: 10.1302/1863-2548-11-160175
  21. Osborne M, Mueske NM, Rethlefsen SA, et al. Pre-operative hamstring length and velocity do not explain the reduced effectiveness of repeat hamstring lengthening in children with cerebral palsy and crouch gait. Gait Posture. 2019;68:323–328. doi: 10.1016/j.gaitpost.2018.11.033
  22. Cirrincione PM, Nichols ET, Zucker CP, et al. Pelvic tilt in adults with cerebral palsy and its relationship with prior hamstrings lengthening. Orthopedics. 2024;47(5):270–275. doi: 10.3928/01477447-20240619-01
  23. Stout JL, Gage JR, Schwartz MH, Novacheck TF. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. J Bone Joint Surg Am. 2008;90(11):2470–2484. doi: 10.2106/JBJS.G.00811
  24. Healy MT, Schwartz MH, Stout JL, et al. Is simultaneous hamstring lengthening necessary when performing distal femoral extension osteotomy and patellar tendon advancement? Gait Posture. 2011;33(1):1–5. doi: 10.1016/j.gaitpost.2010.08.014
  25. Boyer ER, Novacheck TF, Rozumalski A, et al. Long-term outcomes of distal femoral extension osteotomy and patellar tendon advancement in individuals with cerebral palsy. J Bone Joint Surg Am. 2018;100(1):31–41. doi: 10.2106/JBJS.17.00480 EDN: VIRNFV
  26. Geisbüsch A, Klotz MCM, Putz C, et al. Mid-term results of distal femoral extension and shortening osteotomy in treating flexed knee gait in children with cerebral palsy. Children (Basel). 2022;9(10):1427. doi: 10.3390/children9101427 EDN: EKTCYJ
  27. Lenhart RL, Smith CR, Schwartz MH, et al. The effect of distal femoral extension osteotomy on muscle lengths after surgery. J Child Orthop. 2017;11(6):472–478. doi: 10.1302/1863-2548.11.170087
  28. Böhm H, Hösl M, Döderlein L. Predictors for anterior pelvic tilt following surgical correction of flexed knee gait including patellar tendon shortening in children with cerebral palsy. Gait Posture. 2017;54:8–14. doi: 10.1016/j.gaitpost.2017.02.015
  29. Kay RM, McCarthy J, Narayanan U, et al. Finding consensus for hamstring surgery in ambulatory children with cerebral palsy using the Delphi method. J Child Orthop. 2022;16(1):55–64. doi: 10.1177/18632521221080474 EDN: KLYGRT
  30. Patent RU No. 2810888C1/29.12.2023. Novikov VA, Umnov VV, Mustafaeva AR. Device for osteosynthesis of the femur after corrective supracondylar osteotomy. Available from: https://patents.google.com/patent/RU2810888C1/ru (In Russ.)
  31. Mac-Thiong JM, Labelle H, Berthonnaud E, et al. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J. 2007;16(2):227–234. doi: 10.1007/s00586-005-0013-8 EDN: TPHSDF
  32. Verhulst FV, van Sambeeck JDP, Olthuis GS, et al. Patellar height measurements: Insall-Salvati ratio is most reliable method. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):869–875. doi: 10.1007/s00167-019-05531-1 EDN: KFQNTP
  33. Novikov VA, Umnov VV, Umnov DV, et al. The relationship between knee flexion contracture and sagittal spinopelvic profile in patients with cerebral palsy. Modern Problems of Science and Education. 2023;(6):90. doi: 10.17513/spno.33056 EDN: FGKVLD
  34. Novikov VA, Umnov VV, Umnov DV, et al. Correlation between frontal x-ray parameters of the hip joint and sagittal vertebral-pelvic profile in patients with cerebral palsy. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(2):149–158. doi: 10.17816/PTORS321909 EDN: GNFBYL
  35. Hanson AM, Wren TAL, Rethlefsen SA, et al. Persistent increase in anterior pelvic tilt after hamstring lengthening in children with cerebral palsy. Gait Posture. 2023;103:184–189. doi: 10.1016/j.gaitpost.2023.05.016 EDN: RDAFJK
  36. Park H, Park BK, Park KB, et al. Distal femoral shortening osteotomy for severe knee flexion contracture and crouch gait in cerebral palsy. J Clin Med. 2019;8(9):1354. doi: 10.3390/jcm8091354

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of key pelvic angular parameters determined on a standard lateral radiograph. PI, Pelvic incidence, is the angle between the perpendicular to the superior endplate (SI) and a line extending to the center of the femoral head; PT, Pelvic tilt, is the angle between the vertical and a line connecting the center of the superior endplate (SI) to the center of the femoral head; SS, Sacral slope, is the angle between the horizontal and the superior endplate (SI).

Download (91KB)
3. Fig. 2. Schematic diagram for measuring sagittal spinal parameters on a lateral radiograph. TK, Thoracic kyphosis, and LL, Lumbar lordosis are determined by the angles between points corresponding to the boundaries and apices of the thoracic and lumbar spine arches.

Download (99KB)
4. Fig. 3. General lateral view of the patient: a — before surgery; b — after surgery.

Download (222KB)
5. Fig. 4. Violin plot shows the distribution, mean values ​​(dashed lines), and standard deviations of sagittal spine and pelvic parameters (PT — pelvis tilt, PI — pelvic incidence, SS — sacral slope, TK — thoracic kyphosis, LL — lumbar lordosis, SVA — sagittal vertical axis) before and 6 months after surgery. *p < 0.05.

Download (147KB)
6. Fig. 5. Lateral skeletal radiographs: a — before surgery; b — after surgery.

Download (246KB)

Copyright (c) 2025 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».