Correction of Knee Flexion Contracture in Children With Cerebral Palsy by Femoral Extension Osteotomy: Evaluation of the Sagittal Profile
- Authors: Novikov V.A.1, Umnov V.V.1, Zharkov D.S.1, Umnov D.V.1, Mustafaeva A.R.1
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Issue: Vol 13, No 3 (2025)
- Pages: 256-265
- Section: Clinical studies
- URL: https://bakhtiniada.ru/turner/article/view/349947
- DOI: https://doi.org/10.17816/PTORS690021
- EDN: https://elibrary.ru/YSIHVM
- ID: 349947
Cite item
Abstract
BACKGROUND: Knee flexion contracture is one of the most common deformities in children with cerebral palsy, significantly affecting the patients’ gait, energy expenditure, verticalization, and quality of life. Knee flexion contracture can be corrected using either soft tissue procedures (hamstring lengthening) or bony interventions (femoral extension osteotomies). Soft tissue procedures are considered less invasive and are justified based on the underlying pathology. Some studies have reported their effect on sagittal balance, specifically an increase in anterior pelvic tilt. Femoral extension osteotomies have been regarded as sagittally neutral; however, most studies included them as part of combined interventions, which precludes assessment of the isolated effect of the osteotomy itself. This emphasizes the importance of investigating the impact of femoral extension osteotomies on global sagittal alignment in children with cerebral palsy.
AIM: This study aimed to evaluate the effect of corrective femoral extension osteotomy on sagittal spinopelvic parameters in children with cerebral palsy and knee flexion contracture.
METHODS: The study included 14 patients with cerebral palsy treated at the Turner National Medical Research Center for Children’s Orthopedics between 2022 and 2025. The patients underwent corrective supracondylar femoral extension osteotomy with plate fixation with angular stability (LCP PHP 90°). Overall, 26 osteotomies were performed. In three cases, a newly developed implant designed for patients with cerebral palsy with reduced bone density was used. Clinical outcomes (i.e., active extension deficit, contracture degree, and popliteal angle) and radiological parameters (i.e., pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis, thoracic kyphosis, and sagittal vertical axis) were assessed preoperatively and at 6 months postoperatively.
RESULTS: Significant correction of contracture and improvement in active knee extension were observed. Among the radiological parameters, only lumbar lordosis showed a significant change (+4.3° ± 13.5°, p = 0.049). Other parameters remained unchanged. No associations were found between the changes in clinical and radiological parameters.
CONCLUSION: Femoral extension osteotomy is an effective method for correcting knee flexion contracture in children with cerebral palsy and does not cause global sagittal alignment disruption. The increase in lumbar lordosis is adaptive in nature and is not associated with signs of decompensation. Initial experience with the newly designed implant demonstrated technical reliability of fixation and promising applicability in patients with reduced bone density.
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir A. Novikov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN-code: 2773-1027
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgValery V. Umnov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN-code: 6824-5853
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgDmitry S. Zharkov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: striker5621@gmail.com
ORCID iD: 0000-0002-8027-1593
SPIN-code: 5908-7774
MD
Russian Federation, Saint PetersburgDmitry V. Umnov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN-code: 1376-7998
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgAlina R. Mustafaeva
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: alina.mys23@yandex.ru
ORCID iD: 0009-0003-4108-7317
SPIN-code: 1099-7340
MD
Russian Federation, Saint PetersburgReferences
- Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.
- Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol. 2008;50(10):744–750. doi: 10.1111/j.1469-8749.2008.03089.x
- Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. doi: 10.1038/nrdp.2015.82
- Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Transl Pediatr. 2020;9(Suppl 1):S125–S135. doi: 10.21037/tp.2019.09.08
- Rodda JM, Graham HK, Carson L, et al. Sagittal gait patterns in spastic diplegia. J Bone Joint Surg Br. 2004;86(2):251–258. doi: 10.1302/0301-620X.86B2.14034
- Novacheck TF, Gage JR. Orthopedic management of spasticity in cerebral palsy. Childs Nerv Syst. 2007;23(9):1015–1031. doi: 10.1007/s00381-007-0371-1 EDN: WZCTOK
- Yngve DA. Recurvatum of the knee in cerebral palsy: a review. Cureus. 2021;13(4):e14408. doi: 10.7759/cureus.14408 EDN: DZJWHO
- Le Huec JC, Saddiki R, Franke J, et al. Equilibrium of the human body and the gravity line: the basics. Eur Spine J. 2011;20(Suppl 5):558–563. doi: 10.1007/s00586-011-1939-7 EDN: JPBPDC
- Suh SW, Suh DH, Kim JW, et al. Analysis of sagittal spinopelvic parameters in cerebral palsy. Spine J. 2013;13(8):882–888. doi: 10.1016/j.spinee.2013.02.011
- Deceuninck J, Bernard JC, Combey A, et al. Sagittal X-ray parameters in walking or ambulating children with cerebral palsy. Ann Phys Rehabil Med. 2013;56(2):123–133. doi: 10.1016/j.rehab.2012.11.004
- Suh DH, Hong JY, Suh SW, et al. Analysis of hip dysplasia and spinopelvic alignment in cerebral palsy. Spine J. 2014;14(11):2716–2723. doi: 10.1016/j.spinee.2014.03.025
- DeLuca PA, Ounpuu S, Davis RB, Walsh JH. Effect of hamstring and psoas lengthening on pelvic tilt in patients with spastic diplegic cerebral palsy. J Pediatr Orthop. 1998;18(6):712–718. doi: 10.1097/01241398-199811000-00003
- Chang WN, Tsirikos AI, Miller F, et al. Distal hamstring lengthening in ambulatory children with cerebral palsy: primary versus revision procedures. Gait Posture. 2004;19(3):298–304. doi: 10.1016/S0966-6362(03)00070-5
- Gordon AB, Baird GO, McMulkin ML, et al. Gait analysis outcomes of percutaneous medial hamstring tenotomies in children with cerebral palsy. J Pediatr Orthop. 2008;28(3):324–329. doi: 10.1097/BPO.0b013e31816b11d3
- Rethlefsen SA, Yasmeh S, Wren TAL, Kay RM. Repeat hamstring lengthening for crouch gait in children with cerebral palsy. J Pediatr Orthop. 2013;33(5):501–504. doi: 10.1097/BPO.0b013e318288b3e7
- Nazareth A, Rethlefsen S, Sousa TC, et al. Percutaneous hamstring lengthening surgery is as effective as open lengthening in children with cerebral palsy. J Pediatr Orthop. 2019;39(7):366–371. doi: 10.1097/BPO.0000000000000924
- White H, Wallace J, Walker J, et al. Hamstring lengthening in females with cerebral palsy have greater effect than in males. J Pediatr Orthop B. 2019;28(4):337–344. doi: 10.1097/BPB.0000000000000633
- Wijesekera MPC, Wilson NC, Trinca D, et al. Pelvic tilt changes after hamstring lengthening in children with cerebral palsy. J Pediatr Orthop. 2019;39(5):e380–e385. doi: 10.1097/BPO.0000000000001326
- Zwick EB, Saraph V, Zwick G, et al. Medial hamstring lengthening in the presence of hip flexor tightness in spastic diplegia. Gait Posture. 2002;16(3):288–296. doi: 10.1016/S0966-6362(02)00022-X
- Mansour T, Derienne J, Daher M,et al. Is percutaneous medial hamstring myofascial lengthening as anatomically effective and safe as the open procedure? J Child Orthop. 2017;11(1):15–19. doi: 10.1302/1863-2548-11-160175
- Osborne M, Mueske NM, Rethlefsen SA, et al. Pre-operative hamstring length and velocity do not explain the reduced effectiveness of repeat hamstring lengthening in children with cerebral palsy and crouch gait. Gait Posture. 2019;68:323–328. doi: 10.1016/j.gaitpost.2018.11.033
- Cirrincione PM, Nichols ET, Zucker CP, et al. Pelvic tilt in adults with cerebral palsy and its relationship with prior hamstrings lengthening. Orthopedics. 2024;47(5):270–275. doi: 10.3928/01477447-20240619-01
- Stout JL, Gage JR, Schwartz MH, Novacheck TF. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. J Bone Joint Surg Am. 2008;90(11):2470–2484. doi: 10.2106/JBJS.G.00811
- Healy MT, Schwartz MH, Stout JL, et al. Is simultaneous hamstring lengthening necessary when performing distal femoral extension osteotomy and patellar tendon advancement? Gait Posture. 2011;33(1):1–5. doi: 10.1016/j.gaitpost.2010.08.014
- Boyer ER, Novacheck TF, Rozumalski A, et al. Long-term outcomes of distal femoral extension osteotomy and patellar tendon advancement in individuals with cerebral palsy. J Bone Joint Surg Am. 2018;100(1):31–41. doi: 10.2106/JBJS.17.00480 EDN: VIRNFV
- Geisbüsch A, Klotz MCM, Putz C, et al. Mid-term results of distal femoral extension and shortening osteotomy in treating flexed knee gait in children with cerebral palsy. Children (Basel). 2022;9(10):1427. doi: 10.3390/children9101427 EDN: EKTCYJ
- Lenhart RL, Smith CR, Schwartz MH, et al. The effect of distal femoral extension osteotomy on muscle lengths after surgery. J Child Orthop. 2017;11(6):472–478. doi: 10.1302/1863-2548.11.170087
- Böhm H, Hösl M, Döderlein L. Predictors for anterior pelvic tilt following surgical correction of flexed knee gait including patellar tendon shortening in children with cerebral palsy. Gait Posture. 2017;54:8–14. doi: 10.1016/j.gaitpost.2017.02.015
- Kay RM, McCarthy J, Narayanan U, et al. Finding consensus for hamstring surgery in ambulatory children with cerebral palsy using the Delphi method. J Child Orthop. 2022;16(1):55–64. doi: 10.1177/18632521221080474 EDN: KLYGRT
- Patent RU No. 2810888C1/29.12.2023. Novikov VA, Umnov VV, Mustafaeva AR. Device for osteosynthesis of the femur after corrective supracondylar osteotomy. Available from: https://patents.google.com/patent/RU2810888C1/ru (In Russ.)
- Mac-Thiong JM, Labelle H, Berthonnaud E, et al. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J. 2007;16(2):227–234. doi: 10.1007/s00586-005-0013-8 EDN: TPHSDF
- Verhulst FV, van Sambeeck JDP, Olthuis GS, et al. Patellar height measurements: Insall-Salvati ratio is most reliable method. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):869–875. doi: 10.1007/s00167-019-05531-1 EDN: KFQNTP
- Novikov VA, Umnov VV, Umnov DV, et al. The relationship between knee flexion contracture and sagittal spinopelvic profile in patients with cerebral palsy. Modern Problems of Science and Education. 2023;(6):90. doi: 10.17513/spno.33056 EDN: FGKVLD
- Novikov VA, Umnov VV, Umnov DV, et al. Correlation between frontal x-ray parameters of the hip joint and sagittal vertebral-pelvic profile in patients with cerebral palsy. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(2):149–158. doi: 10.17816/PTORS321909 EDN: GNFBYL
- Hanson AM, Wren TAL, Rethlefsen SA, et al. Persistent increase in anterior pelvic tilt after hamstring lengthening in children with cerebral palsy. Gait Posture. 2023;103:184–189. doi: 10.1016/j.gaitpost.2023.05.016 EDN: RDAFJK
- Park H, Park BK, Park KB, et al. Distal femoral shortening osteotomy for severe knee flexion contracture and crouch gait in cerebral palsy. J Clin Med. 2019;8(9):1354. doi: 10.3390/jcm8091354
Supplementary files







