Electrostimulation as a method of correction of respiratory disorders in patients with cervical spinal cord injury: A review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Patients with cervical spinal cord injury have the highest risk of developing respiratory dysfunction and associated complications such as pneumonia, atelectasis, and respiratory failure. Respiratory dysfunction is the leading cause of comorbid, somatic, and infectious pathology, and mortality following traumatic cervical spinal cord injuries. Mechanical ventilation of the lungs is the standard treatment for such patients; however, it is associated with atrophy and diaphragm dysfunction.

AIM: To analyze literature data on the use of electrical stimulation techniques of the spinal cord, nerves, and muscles for the correction of respiratory disorders in patients with cervical spinal cord trauma.

MATERIALS AND METHODS: This study presented the results of the search and analysis of peer-reviewed articles that examined the effects of various electrical stimulation techniques on respiratory function in patients with cervical spinal cord injury. ScienceDirect, Google Scholar, and PubMed were searched from 2000 to 2022.

RESULTS: Currently, new treatment options are available for patients with tetraplegia, with reduced ventilatory function. Many studies have shown the positive effect of electrostimulation techniques on ventilatory function such as reduced time spent on mechanical ventilation and reduced incidence of infections and other lung complications.

CONCLUSIONS: Electrical stimulation promotes neuromuscular plasticity and results in improved spontaneous activation of the diaphragm and respiratory muscles. Electrostimulation in a comprehensive rehabilitation program of patients with traumatic spinal cord injuries at the cervical level is currently employed to promote weaning from mechanical ventilation and prevent accompanying complications such as respiratory failure, pneumonia, and atelectasis. In addition to invasive electrical stimulation of the diaphragmatic nerve and/or spinal cord, existing less invasive electrostimulation techniques require further investigation in patients with spinal cord injury and respiratory dysfunction.

About the authors

Vachtang G. Toriya

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vakdiss@yandex.ru
ORCID iD: 0000-0002-2056-9726
SPIN-code: 1797-5031

MD, neurosurgeon

Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930
Scopus Author ID: 6504128319
ResearcherId: P-8596-2015

MD, PhD, Dr. Sci. (Med.), Professor, Corresponding Member of RAS

Russian Federation, Saint Petersburg

Margarita V. Savina

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN-code: 5710-4790
Scopus Author ID: 57193277614

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Alexey G. Baindurashvili

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: turner011@mail.ru
ORCID iD: 0000-0001-8123-6944
SPIN-code: 2153-9050
Scopus Author ID: 6603212551

MD, PhD, Dr. Sci. (Med.), Professor, Member of RAS, Honored Doctor of the Russian Federation

Russian Federation, Saint Petersburg

References

  1. Krylov VV, Grin’ AA, Lutsik AA, et al. Klinicheskie rekomendatsii po lecheniyu ostroi oslozhnennoi i neoslozhnennoi travmy pozvonochnika u vzroslykh. Nizhnii Novgorod; 2013. (In Russ.)
  2. DiMarco AF. Neural prostheses in the respiratory system. J Rehabil Res Dev. 2001;38(6):601–607.
  3. Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6(1):24–33. doi: 10.5312/wjo.v6.i1.24
  4. Tester NJ, Fuller DD, Fromm JS, et al. Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med. 2014;189(1):57–65. doi: 10.1164/rccm.201305-0848OC
  5. Berlly M, Shem K. Respiratory management during the first five days after spinal cord injury. J Spinal Cord Med. 2007;30(4):309–318. doi: 10.1080/10790268.2007
  6. Wolfe LF, Gay PC. Point: Should phrenic nerve stimulation be the treatment of choice for spinal cord injury? Yes. Chest. 2013;143(5):1201–1203. doi: 10.1378/chest.13-0217
  7. Fielingsdorf K, Dunn RN. Cervical spine injury outcome – a review of 101 cases treated in a tertiary referral unit. S Afr Med J. 2007;97(3):203–207.
  8. Fisher CG, Noonan VK, Dvorak MF. Changing face of spine trauma care in North America. Spine. 2006;31(11):S2–8. doi: 10.1097/01.brs.0000217948.02567
  9. Schilero GJ, Spungen AM, Bauman WA, et al. Pulmonary function and spinal cord injury. Respir Physiol Neurobiol. 2009;166(3):129–141. doi: 10.1016/j.resp.2009.04.002
  10. Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol. 2012;109:283–296. doi: 10.1016/B978-0-444-52137-8.00018-8
  11. Angeli CA, Edgerton VR, Gerasimenko YP, et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(Pt 5):1394–1409. doi: 10.1093/brain/awu038
  12. Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938–1947. doi: 10.1016/S0140-6736(11)60547-3
  13. Rejc E, Angeli C, Harkema S. Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS One. 2015;10(7). doi: 10.1371/journal.pone.0133998
  14. Howard-Quijano K, Takamiya T, Dale EA, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am J Physiol Heart Circ Physiol. 2017;313(2):H421–H431. doi: 10.1152/ajpheart.00129.2017
  15. Toriya VG, Savina MV, Vissarionov SV, et al. Hereditary erythromelalgia in an adolescent. Clinical observation of a rare disease. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(1):85–92. (In Russ.) doi: 10.17816/PTORS90396
  16. Fuller DD, Golder FJ, Olson EB Jr, et al. Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. J Appl Physiol. 2006;100(3):800–806. doi: 10.1152/japplphysiol.00960.2005
  17. Vinit S, Gauthier P, Stamegna JC, et al. High cervical lateral spinal cord injury results in long-term ipsilateral hemidiaphragm paralysis. J Neurotrauma. 2006;23(7):1137–1146. doi: 10.1089/neu.2006.23.1137
  18. Dalal K, DiMarco AF. Diaphragmatic pacing in spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25(3):619–629. doi: 10.1016/j.pmr.2014.04.004
  19. Hall OT, McGrath RP, Peterson MD, et al. The burden of traumatic spinal cord injury in the united states: disability-adjusted life years. Arch Phys Med Rehabil. 2019;100(1):95–100. doi: 10.1016/j.apmr.2018.08.179
  20. Hachmann JT, Grahn PJ, Calvert JS, et al. Electrical neuromodulation of the respiratory system after spinal cord injury. Mayo Clin Proc. 2017;92(9):1401–1414. doi: 10.1016/j.mayocp.2017.04.011
  21. Graco M, McDonald L, Green SE, et al. Prevalence of sleep-disordered breathing in people with tetraplegia – a systematic review and meta-analysis. Spinal Cord. 2021;59(5):474–484. doi: 10.1038/s41393-020-00595-0
  22. Arora S, Flower O, Murray NP, et al. Respiratory care of patients with cervical spinal cord injury: a review. Crit Care Resusc. 2012;14(1):64–73.
  23. Chiodo AE, Scelza W, Forchheimer M. Predictors of ventilator weaning in individuals with high cervical spinal cord injury. J Spinal Cord Med. 2008;31(1):72–77. doi: 10.1080/10790268.2008.11753984
  24. Zander HJ, Kowalski KE, DiMarco AF, et al. Model-based optimization of spinal cord stimulation for inspiratory muscle activation. Neuromodulation. 2022;25(8):1317–1329. doi: 10.1111/ner.13415
  25. Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–1335. doi: 10.1056/NEJMoa070447
  26. DiMarco AF. Phrenic nerve stimulation in patients with spinal cord injury. Respir Physiol Neurobiol. 2009;169(2):200–209. doi: 10.1016/j.resp.2009.09.008
  27. DeVivo MJ, Go BK, Jackson AB. Overview of the national spinal cord injury statistical center database. J Spinal Cord Med. 2002;25(4):335–338. doi: 10.1080/10790268.2002.11753637
  28. Adler D, Gonzalez-Bermejo J, Duguet A, et al. Diaphragm pacing restores olfaction in tetraplegia. Eur Respir J. 2009;34(2):365–370. doi: 10.1183/09031936.00177708
  29. Jarosz R, Littlepage MM, Creasey G, et al. Functional electrical stimulation in spinal cord injury respiratory care. Top Spinal Cord Inj Rehabil. 2012;18(4):315–321. doi: 10.1310/sci1804-315
  30. Vissarionov SV, Baindurashvili AG, Kryukova IA. International standards for neurological classification of spinal cord injuries (ASIA/ISNCSCI scale, revised 2015). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2016;4(2):67–72. (In Russ.) doi: 10.17816/PTORS4267-72
  31. Creasey GH, Ho CH, Triolo RJ, et al. Clinical applications of electrical stimulation after spinal cord injury. J Spinal Cord Med. 2004;27(4):365–375. doi: 10.1080/10790268.2004.11753774
  32. Miko I, Gould R, Wolf S, et al. Acute spinal cord injury. Int Anesthesiol Clin. 2009;47(1):37–54. doi: 10.1097/AIA.0b013e3181950068
  33. DiMarco AF. Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques. Respir Physiol Neurobiol. 2005;147(2–3):273–287. doi: 10.1016/j.resp.2005.03.007
  34. Bass CR, Davis M, Rafaels K, et al. A methodology for assessing blast protection in explosive ordnance disposal bomb suits. Int J Occup Saf Ergon. 2005;11(4):347–361. doi: 10.1080/10803548.2005.11076655
  35. Posluszny JA Jr, Onders R, Kerwin AJ, et al. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration. J Trauma Acute Care Surg. 2014;76(2):303–309. doi: 10.1097/TA.0000000000000112
  36. Onders RP. Functional electrical stimulation: restoration of respiratory function. Handb Clin Neurol. 2012;109:275–282. doi: 10.1016/B978-0-444-52137-8.00017-6
  37. DiMarco AF, Onders RP, Ignagni A, et al. Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest. 2005;127(2):671–678. doi: 10.1378/chest.127.2.671
  38. DiMarco AF, Onders RP, Kowalski KE, et al. Phrenic nerve pacing in a tetraplegic patient via intramuscular diaphragm electrodes. Am J Respir Crit Care Med. 2002;166(12 Pt 1):1604–1606. doi: 10.1164/rccm.200203-175CR
  39. Hormigo KM, Zholudeva LV, Spruance VM, et al. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp Neurol. 2017;287(Pt 2):276–287. doi: 10.1016/j.expneurol.2016.08.018
  40. Kandhari S, Sharma D, Tomar AK, et al. Epidural electrical spinal cord stimulation of the thoracic segments (T2-T5) facilitates respiratory function in patients with complete spinal cord injury. Respir Physiol Neurobiol. 2022;300. doi: 10.1016/j.resp.2022.103885
  41. Chang J, Shen D, Wang Y, et al. A review of different stimulation methods for functional reconstruction and comparison of respiratory function after cervical spinal cord injury. Appl Bionics Biomech. 2020;2020. doi: 10.1155/2020/8882430
  42. Satkunendrarajah K, Karadimas SK, Laliberte AM, et al Cervical excitatory neurons sustain breathing after spinal cord injury. Nature. 2018;562(7727):419–422. doi: 10.1038/s41586-018-0595-z
  43. DiMarco AF, Kowalski KE. Electrical activation to the parasternal intercostal muscles during high-frequency spinal cord stimulation in dogs. J Appl Physiol. 2015;118(2):148–155. doi: 10.1152/japplphysiol.01321.2013
  44. Galeiras Vázquez R, Rascado Sedes P, Mourelo Fariña M, et al. Respiratory management in the patient with spinal cord injury. Biomed Res Int. 2013;2013. doi: 10.1155/2013/168757
  45. Cavka K, Fuller DD, Tonuzi G, et al. Diaphragm pacing and a model for respiratory rehabilitation after spinal cord injury. J Neurol Phys Ther. 2021;45(3):235–242. doi: 10.1097/NPT.0000000000000360
  46. Sharma V, Jafri H, Roy N, et al. Thirty-six-month follow-up of diaphragm pacing with phrenic nerve stimulation for ventilator dependence in traumatic tetraplegia: the way forward for spinal cord injury rehabilitation in a developing country. Asian Spine J. 2021;15(6):874–880. doi: 10.31616/asj.2020.0227
  47. Gorgey AS, Lai RE, Khalil RE, et al. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol. 2021;131(1):265–276. doi: 10.1152/japplphysiol.01029.2020
  48. McCaughey EJ, Berry HR, McLean AN, et al. Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: a cohort study. PLoS One. 2015;10(6). doi: 10.1371/journal.pone.0128589
  49. McCaughey EJ, Borotkanics RJ, Gollee H, et al. Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis. Spinal Cord. 2016;54(9):628–639. doi: 10.1038/sc.2016.31
  50. McBain RA, Boswell-Ruys CL, Lee BB, et al. Abdominal muscle training can enhance cough after spinal cord injury. Neurorehabil Neural Repair. 2013;27(9):834–843. doi: 10.1177/1545968313496324
  51. McCaughey EJ, Butler JE, McBain RA, et al. Abdominal functional electrical stimulation to augment respiratory function in spinal cord injury. Top Spinal Cord Inj Rehabil. 2019;25(2):105–111. doi: 10.1310/sci2502-105
  52. DiMarco AF, Kowalski KE, Geertman RT, et al. Spinal cord stimulation: a new method to produce an effective cough in patients with spinal cord injury. Am J Respir Crit Care Med. 2006;173(12):1386–1389. doi: 10.1164/rccm.200601-097CR
  53. Duru PO, Tillakaratne NJ, Kim JA, et al. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-hydroxytryptamine agonists in spinal rats. J Neurosci Res. 2015;93(8):1229–1239. doi: 10.1002/jnr.23579
  54. Edgerton VR, Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother. 2011;11(10):1351–1353. doi: 10.1586/ern.11.129
  55. Toriya VG, Vissarionov SV, Savina MV, et al. Surgical treatment of a patient with erythromelalgia (Mitchell’s syndrome) using invasive spinal cord stimulation: a clinical case. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(2):197–205. (In Russ.) doi: 10.17816/PTORS108045
  56. Kowalski KE, Romaniuk JR, Kirkwood PA, et al. Inspiratory muscle activation via ventral lower thoracic high-frequency spinal cord stimulation. J Appl Physiol. 2019;126(4):977–983. doi: 10.1152/japplphysiol.01054.2018
  57. DiMarco AF, Kowalski KE, Geertman RT, et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-Sponsored clinical trial. Part II: Clinical outcomes. Arch Phys Med Rehabil. 2009;90(5):726–732. doi: 10.1016/j.apmr.2008.11.014
  58. DiMarco AF, Kowalski KE. Intercostal muscle pacing with high frequency spinal cord stimulation in dogs. Respir Physiol Neurobiol. 2010;171(3):218–224. doi: 10.1016/j.resp.2010.03.017
  59. DiMarco AF, Kowalski KE. High-frequency spinal cord stimulation of inspiratory muscles in dogs: a new method of inspiratory muscle pacing. J Appl Physiol. 2009;107(3):662–669. doi: 10.1152/japplphysiol.00252.2009
  60. Sunshine MD, Cassarà AM, Neufeld E, et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Commun Biol. 2021;4(1):107. doi: 10.1038/s42003-020-01604-x
  61. DiMarco AF, Kowalski KE, Geertman RT, et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-sponsored clinical trial. Part I: Methodology and effectiveness of expiratory muscle activation. Arch Phys Med Rehabil. 2009;90(5):717–725. doi: 10.1016/j.apmr.2008.11.013
  62. Gerasimenko Y, Gorodnichev R, Moshonkina T, et al. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med. 2015;58(4):225–231. doi: 10.1016/j.rehab.2015.05.003
  63. Gerasimenko YP, Lu DC, Modaber M, et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma. 2015;32(24):1968–1980. doi: 10.1089/neu.2015.4008
  64. Ladenbauer J, Minassian K, Hofstoetter US, et al. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng. 2010;18(6):637–645. doi: 10.1109/TNSRE.2010.2054112
  65. Inanici F, Samejima S, Gad P, et al. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2018;26(6):1272–1278. doi: 10.1109/TNSRE.2018.2834339
  66. Inanici F, Brighton LN, Samejima S, et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2021;29:310–319. doi: 10.1109/TNSRE.2021.3049133
  67. Zhang F, Momeni K, Ramanujam A, et al. Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study. IEEE Trans Neural Syst Rehabil Eng. 2020;28(12):3167–3174. doi: 10.1109/TNSRE.2020.3048592
  68. Gad P, Kreydin E, Zhong H, et al. Enabling respiratory control after severe chronic tetraplegia: an exploratory case study. J Neurophysiol. 2020;124(3):774–780. doi: 10.1152/jn.00320.2020
  69. Minyaeva AV, Moiseev SA, Pukhov AM, et al. Response of external inspiration to the movements induced by transcutaneous spinal cord stimulation. Hum Physiol. 2017;43(5):524–531. doi: 10.1134/S0362119717050115

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Central organization of the neural control of breathing

Download (198KB)
3. Fig. 2. Scheme of the posterolateral arrangement of electrodes during abdominal functional electrical stimulation: a, abdomen at an angle of 45°; b, abdomen in front view (areas of electrode application are marked)

Download (94KB)

Copyright (c) 2023 Toriya V.G., Vissarionov S.V., Savina M.V., Baindurashvili A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».