Improved dfig dftc by using a fractional-order super twisting algorithms in wind power application

Cover Page

Cite item

Full Text

Abstract

Background: The direct flux and torque control are a robust, simple, and alternative approach control formulation that does not require decomposition into symmetrical components; the direct flux and torque control schemes have been proved to be preponderant for doubly-fed induction generators due to the simple implementation.

Aim: This work presents the minimization of electromagnetic torque and rotor flux undulations of doubly-fed induction generators using fractional-order super twisting algorithms and modified space vector modulation techniques.

Methods: The main role of direct flux and torque control is to regulate and control the electromagnetic torque and rotor flux of doubly-fed induction generators for wind turbine systems. The direct flux and torque control is a traditional control algorithm and robust technique. Fractional-order super twisting algorithms are a new and proposed nonlinear controller; characterized by a robust controller and a simpler algorithm, which gives a good harmonic distortion of current compared to other methods.

Novelty: The A fractional-order super twisting algorithm is proposed. Proposed nonlinear controller construction is based on the traditional super twisting algorithm and fractional calculus to obtain a robust controller and reduces the electromagnetic torque and rotor flux undulations of doubly-fed induction generators. We use in our study a 1.5 MW doubly-fed induction generator integrated into a single-rotor wind turbine system to minimizes the electromagnetic torque, stator current, rotor flux undulations. As shown in the results figures using fractional-order super twisting algorithms ameliorate effectiveness especially minimizes the electromagnetic torque and rotor flux, and minimizes harmonic distortion of stator current (0.16 %) compared to the traditional control scheme.

Results: As shown in the results figures using fractional-order super twisting algorithms ameliorate effectiveness especially minimizes the electromagnetic torque and rotor flux, and minimizes harmonic distortion of stator current (0.16 %) compared to the traditional control scheme.

Conclusion: The direct flux and torque control are a robust, simple, and alternative approach control formulation that does not require decomposition into symmetrical components; the direct flux and torque control schemes have been proved to be preponderant for doubly-fed induction generators due to the simple implementation.

About the authors

Ali Nadhim Jbarah Almakki

Kazan National Research Technical University named after A.N. Tupolev

Author for correspondence.
Email: alinadhimj@gmail.com
ORCID iD: 0000-0002-0061-6425

Postgraduate

Russian Federation, Kazan

Andrey Mazalov

Kazan National Research Technical University named after A.N. Tupolev; South Federal University

Email: anmaz8@list.ru
ORCID iD: 0000-0003-3761-0059
SPIN-code: 6534-7455
Scopus Author ID: 55927486000

PhD, associate professor

Russian Federation, Kazan; Rostov-On-Don

References

  1. Liu D, Polinder H, Abrahamsen AB, Ferreira JA. Effects of armature winding segmentation with multiple converters on the short circuit torque of 10-MW superconducting wind turbine generators. IEEE Transactions on Applied Superconductivity. 2017; 27(4):1-5. doi: 10.1109/TASC.2016.2639029
  2. Djeriri Y. Lyapunov-based robust power controllers for a doubly fed induction generator. Iranian Journal of Electrical and Electronic Engineering. 2020; 16(4):551-558. doi: 10.22068/IJEEE.16.4.551
  3. Prasad R, Padhy NP. Synergistic frequency regulation control mechanism for DFIG wind turbines with optimal pitch dynamics. IEEE Transactions on Power Systems. 2020; 35(4):3181-3191. doi: 10.1109/TPWRS.2020.2967468
  4. Mondal S, Kastha D. Input reactive power controller with a novel active damping strategy for a matrix converter fed direct torque controlled DFIG for wind power generation. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2020; 8(4):3700-3711. doi: 10.1109/JESTPE.2019.2938012
  5. Yu SS, Zhang G, Fernando T, Iu HH. A DSE-Based SMC method of sensorless DFIG wind turbines connected to power grids for energy extraction and power quality enhancement. IEEE Access, 2018;6:76596-76605. doi: 10.1109/ACCESS.2018.2883591
  6. Benbouhenni H, Boudjema Z, Belaidi A. DPC based on ANFIS super-twisting sliding mode algorithm of a doubly-fed induction generator for wind energy system. Journal Européen des Systèmes Automatisés, 2020;53(1):69-80.
  7. Prasad RM, Mulla MA. A novel position-sensorless algorithm for field-oriented control of DFIG with reduced current sensors. IEEE Transactions on Sustainable Energy. 2019;10(3):1098-1108. doi: 10.1109/TSTE.2018.2860993
  8. Mondal S, Kastha D. Improved direct torque and reactive power control of a matrix-converter-fed grid-connected doubly fed induction generator. IEEE Transactions on Industrial Electronics, 2015;62(12):7590-7598. doi: 10.1109/TIE.2015.2459056
  9. Zhang Z, Tang R, Bai B, Xie D. Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE Transactions on Magnetics. 2010;46(8):3133-3136. doi: 10.1109/TMAG.2010.2051142
  10. Benbouhenni H. Four-level direct torque control of permanent magnet synchronous motor based on neural networks with regulation speed using neural PI controller. Majlesi Journal of Mechatronic Systems, 2019;8(4):1-10.
  11. Benbouhenni H, Boudjema Z. Two-level DTC based on ANN controller of DFIG using 7-level hysteresis command to reduce flux ripple comparing with traditional command. 2018 International Conference on Applied Smart Systems (ICASS). November 24-25. Medea, Algeria. 2018. doi: 10.1109/ICASS.2018.8652013
  12. Zhang Z, Zhao Y, Qiao W, Qu L. A discrete-time direct torque control for direct-drive PMSG-based wind energy conversion systems. IEEE Transactions on Industry Applications. 2015;51(4):3504-3514. doi: 10.1109/TIA.2015.2413760
  13. El Ouanjli N, Motahhir S, Derouich A, El Ghzizal A, Chebabhi A, Taoussi M. Improved DTC strategy of doubly fed induction motor using fuzzy logic controller. Energy Reports. 2019;5:271-279. doi: 10.1016/j.egyr.2019.02.001
  14. Benbouhenni H. Torque ripple reduction of DTC DFIG drive using neural PI regulators. Majlesi Journal of Energy Management. 2019;8(2):21-26.
  15. Arbi J, Ghorbal MJ, Slama-Belkhodja I, Charaabi L. Direct virtual torque control for doubly fed induction generator grid connection. IEEE Transactions on Industrial Electronics. 2009;56(10):4163-4173. doi: 10.1109/TIE.2009.2021590
  16. Giribabu D, Kumar A. Comparative study of control strategies for the induction generators in wind energy conversion system. Wind and Structures.2016;22(6):635-662. doi: 10.12989/was.2016.22.6-.635
  17. Boudjema Z, Taleb R, Djerriri Y, Yahdou A. A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system. Turkish Journal of Electrical Engineering & Computer Sciences. 2017;25(2): 965-975.
  18. Farid B, Tarek B, Sebti B. Fuzzy super twisting algorithm dual direct torque control of doubly fed induction machine. International Journal of Electrical and Computer Engineering. 2021;11(5). doi: 10.11591/ijece.v11i5.pp%25p
  19. Benbouhenni H. Utilization of an ANFIS-STSM algorithm to minimize total harmonic distortion. International Journal of Smart Grid. 2020;4(2):56-67.
  20. Benbouhenni H. Stator current and rotor flux ripples reduction of DTC DFIG drive using FSTSMC algorithm. International Journal of Smart Grid. 2019;3(4).
  21. Benbouhenni H. Rotor flux and torque ripples minimization for direct torque control of DFIG by NSTSM algorithm. Majlesi Journal of Energy Management. 2018;7(3).
  22. Amrane F, Chaiba A. A novel direct power control for grid-connected doubly fed induction generator based on hybrid artificial intelligent control with space vector modulation. Rev. Sci. Techni.-Electrotechn. Et Energ. 2016;61(3):263-268.
  23. Tavakoli SM, Pourmina MA, Zolghadri MR. Comparison between different DPC methods applied to DFIG wind turbines. International Journal of Renewable Energy Research. 2013;3(2):446-452.
  24. Listwan J. Application of super-twisting sliding mode controllers in direct field-oriented control system of six-phase induction motor: experimental studies. Power Electronics and Drives. 2018;3(1):23-34. doi: 10.2478/pead-2018-0013.
  25. Nieto JJ. Maximum principles for fractional differential equations derived from mittag-leffler functions. Applied Mathematics Letters. 2010;23(10):1248-1251. doi: 10.1016/j.aml.2010.06.007
  26. Chen H, Wei X, Chen X, Jingang H, Aït-Ahmed N, Zhibin Z, Tianhao T, Mohamed B. Fractional-Order PI Control of DFIG-Based Tidal Stream Turbine. J. Mar. Sci. Eng. 2020;8(5)1-23. doi: 10.-3390/jmse8050309
  27. Ebrahimkhani S. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines. ISA Transactions, 2016;63:343-354. doi: 10.1016/j.isatra.2016.0-3.003
  28. Xiong L, Wang J, Mi X, Khan MW. Fractional order sliding mode based direct power control of grid-connected DFIG. IEEE Transactions on Power Systems. 2018;33(3):3087-3096. doi: 10.1109/TPWRS.201-7.2761815
  29. Azza A, Kherfane H. Robust control of doubly fed induction generator using fractional order control. International Journal of Power Electronics and Drive System. 2018;9(3):1072-1080. doi: 10.11591/ij-peds.v9.i3.pp1072-1080
  30. Kashkooli MRA, Madani SM, Lipo TA. Improved Direct Torque Control for a DFIG under Symmetrical Voltage Dip With Transient Flux Damping. IEEE Transactions on Industrial Electronics. 2020;67(1):28-37. doi: 10.1109/TIE.2019.2893856
  31. Cherifi D. Improvement technique of direct torque control of DFIG based in wind energy conversion system. Global Journal of Information Technology: Emerging Technologies. 2020;10(1):22-34. doi: 10.18844/gjit.v10i1.4630
  32. Benbouhenni H, Boudjema Z, Belaidi A. Power Control of DFIG in WECS Using DPC and NDPC-NPWM Methods. Mathematical Modelling of Engineering Problems. 2020;7(2):223-236.
  33. Benbouhenni H, Boudjema Z, Belaidi A. Direct power control with NSTSM algorithm for DFIG using SVPWM technique. Iranian Journal of Electrical & Electronic Engineering. 2021;17(1):1-11.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of the DFIG with DFTC-PI.

Download (25KB)
3. Fig. 2. Block diagram of the DFIG with DFTC-FOSTA.

Download (24KB)
4. Fig. 3. Block diagram of the modified SVM technique

Download (45KB)
5. Fig. 4. THD (DFTC-PI)

Download (102KB)
6. Fig. 5. THD (DFTC-FOSTA)

Download (99KB)
7. Fig. 6. Stator current

Download (117KB)
8. Fig. 7. Rotor flux

Download (117KB)
9. Fig. 8. Torque

Download (119KB)
10. Fig. 9. Zoom (Current Ias)

Download (147KB)
11. Fig. 10. Zoom (Rotor flux)

Download (148KB)
12. Fig. 11. Zoom (Torque)

Download (150KB)
13. Fig. 12. Torque

Download (120KB)
14. Fig. 13. Rotor flux

Download (119KB)
15. Fig. 14. Stator current

Download (123KB)
16. Fig. 15. Zoom (Torque)

Download (152KB)
17. Fig. 16. Zoom (Rotor flux)

Download (151KB)
18. Fig. 17. Zoom (Stator current)

Download (158KB)
19. Fig. 18. THD (DFTC-PI)

Download (103KB)
20. Fig. 19. THD (DFTC-FOSTA)

Download (100KB)

Copyright (c) 2021 Almakki A.J., Mazalov A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».