Dynamic characteristics of a magnetic bearing based on high-temperature superconductors in the event of rotor and stator misalignment
- Authors: Martirosian I.V.1, Alexandrov D.A.1, Pokrovskii S.V.1, Rudnev I.A.1
-
Affiliations:
- National research nuclear university MEPHI
- Issue: Vol 10, No 1 (2024)
- Pages: 76-92
- Section: Original studies
- URL: https://bakhtiniada.ru/transj/article/view/254563
- DOI: https://doi.org/10.17816/transsyst625010
- ID: 254563
Cite item
Full Text
Abstract
Aim: This study aims to analyze the influence of harmonic excitations during bearing misalignment on the power and mechanical characteristics of a high-speed magnetic bearing based on tape high-temperature superconducting composites.
Methods. Numerical multiphysics analysis of a superconducting magnetic bearing was performed using the finite element method in Comsol Multiphysics.
Results. When there is a deviation from coaxiality in the arrangement of the magnetic elements of the HTS bearing, harmonic excitations, vibrations, and beats appear, leading to a deterioration in the load characteristics of the device and a decrease in the dynamic permeability of the magnetic system.
Conclusion. The developed numerical model makes it possible to predict the dynamic and mechanical characteristics of high-speed HTS bearings and can be used to develop high-speed rotor systems.
Full Text
##article.viewOnOriginalSite##About the authors
Irina V. Martirosian
National research nuclear university MEPHI
Author for correspondence.
Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN-code: 3368-8809
Cand. Sci. (Physics and Mathematics), research engineer
Russian Federation, MoscowDmitry A. Alexandrov
National research nuclear university MEPHI
Email: cfrfcfrfdima123@gmail.com
ORCID iD: 0009-0001-7383-0094
research engineer
Russian Federation, MoscowSergey V. Pokrovskii
National research nuclear university MEPHI
Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN-code: 6643-7817
Cand. Sci. (Physics and Mathematics), Head of the Laboratory
Russian Federation, MoscowIgor A. Rudnev
National research nuclear university MEPHI
Email: iarudnev@mephi.ru
ORCID iD: 0000-0002-5438-2548
SPIN-code: 2070-5265
Dr. Sci. (Physics and Mathematics), Professor, Lead Research Fellow
Russian Federation, MoscowReferences
- Sun XD, Chen L, Yang ZB. Overview of bearingless permanent-magnet synchronous motors. IEEE T Ind Electron. 2013;60:5528–5538. doi: 10.1109/tie.2012.2232253
- Samanta P, Hirani H. Magnetic bearing configurations: theoretical and experimental studies. IEEE Trans Magn. 2008;44:292–300. doi: 10.1109/tmag.2007.912854
- Andriollo M, Fanton E, Tortella A. A review of innovative electromagnetic technologies for a totally artificial heart. Appl Sci. 2023;13:1870. doi: 10.3390/app13031870
- Rogers JG, Pagani FD, Tatooles AJ, et.al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451–460. doi: 10.1056/NEJMoa1602954
- Li XJ, Palazzolo A, Wang ZY. A combination 5-DOF active magnetic bearing for energy storage flywheels. IEEE Trans Transp Electrification. 2021;7:2344–2355. doi: 10.1109/tte.2021.3079402
- Wang JS, Zeng Y, Huang H, et.al. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C. 2002;378–381(1): 809-814. doi: 10.1016/S0921-4534(02)01548-4
- Deng Z, Zhang W, Zheng J, et al. A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system. IEEE Trans. Appl. Supercond. 2017;27(6):3602008. doi: 10.1109/TASC.2017.2716842
- Kuhn L, de Haas O, Berger D. Supratrans II–Test drive facility for a superconductor based maglev train. Elekt. Bahnen. 2012;8:461–469. doi: 10.1109/TASC.2005.849636
- Sotelo GG, Oliveira RAH, Costa FS, et.al. A full scale superconducting magnetic levitation vehicle operational line. IEEE Trans. Appl. Supercond. 2015;23(3):3601005. doi: 10.1109/TASC.2014.2371432
- Hikihara T, Moon FC. Chaotic levitated motion of a magnet supported by superconductor. Phys. Lett. A. 1994;191(3/4):279–284. doi: 10.1016/0375-9601(94)90140-6
- Hikihara T, Fujinami T, Moon FC. Bifurcation and multifractal vibration in dynamics of a high-Tc superconducting levitation system. Phys. Lett. A. 1997;231(3/4): 217–223. doi: 10.1016/S0375-9601(97)00305-8
- Coombs TA, Campbel AM. Gap decay in superconducting magneticn bearings under the influence of vibrations. Physica C. 1996;256(3):298–302. doi: 10.1016/0921-4534(95)00670-2
- Hull R. Superconducting bearings. Supercond. Sci. Technol. 2000;13(2):R1–R15. doi: 10.1088/0953-2048/13/2/201
- Wang J, Wang S, Zeng Y, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C. 2002;378–381:809-14. doi: 10.1016/S0921-4534(02)01548-4
- Jha AK, Matsumoto K. Superconductive REBCO Thin Films and Their Nanocomposites: The Role of Rare-Earth Oxides in Promoting Sustainable Energy. Frontiers in Physics, Review. 2019;7. doi: 10.3389/fphy.2019.00082
- Barth C, Mondonico G, Senatore C. Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T. Supercond. Sci. Technol. 2015;28(4):045011. doi: 10.1088/0953-2048/28/4/045011
- MacManus-Driscoll JL, Wimbush SC. Processing and application of high-temperature superconducting coated conductors. Nature Reviews Materials. 2021;6(7):587–604. doi: 10.1038/s41578-021-00290-3
- Lee S, Petrykin V, Molodyk A, et al. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables. Supercond. Sci. Technol. 2014;27:044022. doi: 10.1088/0953-2048/27/4/044022
- Tomków Ł, Mineev N, Smara A, et al. Theoretical analysis of heat transport in tilted stacks of HTS tapes at temperatures above 20 K. Cryogenics. 2020;105:103017. doi: 10.1016/j.cryogenics.2019.103017
- Selvamanickam V. High temperature superconductor (HTS) wires and tapes. 2012. pp. 34–68. doi: 10.1533/9780857095299.1.34
- Patel A, Baskys A, Mitchell-Williams T, et al. A trapped field of 17.7 T in a stack of high temperature superconducting tape. Supercond. Sci. Technol. 2018;31(9):09LT01. doi: 10.1088/1361-6668/aad34c
- SuperOx [Internet]. [cited 2023 November 30]. Available from: https://www.superox.ru/
- Martirosian IV, Pokrovskii SV, Osipov MA, et al. Simulation of the maglev suspension dynamic characteristics during movement, acceleration and deceleration. Modern Transportation Systems and Technologies. 2022;8(3):63–77. (In Russ.) EDN: FRVRIA doi: 10.17816/transsyst20228363-77
- Osipov M, Anishenko I, Starikovskii A, et al. Scalable Superconductive Magnetic Bearing Based on Non-Closed CC Tapes Windings. Supercond. Sci. Technol. 2021;SUST-104182.R1. doi: 10.1088/1361-6668/abda5a
- Anischenko IV, Osipov MA, Pokrovskii SV, et al. Magnetic Levitation Characteristics of the System of Permanent Magnet Stacks of HTS Tapes of Various Architectures. Physics of Atomic Nuclei. 2021;4(12):1982–1990. doi: 10.1134/S1063778821100045
Supplementary files
