Magnetic levitation modeling of support magnetic bearing based on stacks of composite HTS tapes
- 作者: Martirosian I.V.1, Starikovskii A.S.1, Balakina M.V.1, Pokrovskii S.V.1
-
隶属关系:
- National research nuclear university
- 期: 卷 11, 编号 2 (2025)
- 页面: 332-347
- 栏目: Original studies
- URL: https://bakhtiniada.ru/transj/article/view/311290
- DOI: https://doi.org/10.17816/transsyst683380
- ID: 311290
如何引用文章
全文:
详细
AIM. To determine the optimal magnetic field configuration ensuring scalability and high load on the support HTS bearing.
MATERIALS AND METHODS. Numerical analysis of HTS bearings was performed in Comsol Multiphysics modeling environment.
RESULTS. The authors determined magnetic field distributions for various configurations of magnetic HTS bearing assemblies, including a ring magnet, cubic magnets, and sectorial permanent magnets. The authors determined vertical and lateral load curves for different shapes of HTS bearings.
CONCLUSION. It was found that sectorial permanent magnets with a magnetic circuit is the optimal solution to achieve the highest stability and load-bearing capacity of a superconducting bearing while maintaining the scalability.
作者简介
Irina Martirosian
National research nuclear university
Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN 代码: 3368-8809
Cand. Sci. (Phys.-Math.), research engineer
俄罗斯联邦, MoscowAleksandr Starikovskii
National research nuclear university
Email: sannyok1995@gmail.com
ORCID iD: 0000-0002-7605-7578
SPIN 代码: 9493-3256
research engineer
俄罗斯联邦, MoscowMaria Balakina
National research nuclear university
Email: masha.ball.8530@gmail.com
ORCID iD: 0009-0006-3831-8171
student
俄罗斯联邦, MoscowSergey Pokrovskii
National research nuclear university
编辑信件的主要联系方式.
Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN 代码: 6643-7817
Cand. Sci. (Phys.-Math.), Head of the Laboratory
俄罗斯联邦, Moscow参考
- Mukoyama S, Nakao K, Sakamoto H, et al. Development of superconducting magnetic bearing for 300 kW flywheel energy storage system. IEEE Transactions on Applied Superconductivity. 2017;27(4):1-4. doi: 10.1109/TASC.2017.2652327
- Miyazaki Y, Mizuno K, Yamashita T, et al. Development of superconducting magnetic bearing for flywheel energy storage system. Cryogenics. 2016;80:234-237. doi: 10.1016/j.cryogenics.2016.05.011
- Oliveira R, Zeng X, Pei X, Burke R. HTS-tape magnetic bearing for ultra high-speed turbo motor. IEEE Transactions on Applied Superconductivity. 2023;33(5):1-5. doi: 10.1109/TASC.2023.3253064
- Kummeth P, Ries G, Nick W, Neumüller HW. Development and characterization of magnetic HTS bearings for a 400 kW synchronousHTS motor. Superconductor Science and Technology. 2004;17(5):S259. doi: 10.1088/0953-2048/17/5/032
- Yang W, Ji Y, Yu L, et al. Low frequency rotational loss in a high-temperature superconducting bearing and its application in micro-thrust measurement for space propulsion. Superconductor Science and Technology. 2019;33(1). doi: 10.1088/1361-6668/ab58b9
- Sakurai Y, Ashton P, Kusaka A, et al. Half-meter scale superconducting magnetic bearing for cosmic microwave background polarization experiments. J. Phys.: Conf. Ser. 1590. doi: 10.1088/1742-6596/1590/1/012060
- Ye M, Yang W, Wang Y, et al. Effect of temperature on rotation loss in a superconducting device for microthrust measurement of electric propulsion system. IEEE Transactions on Applied Superconductivity. 2015;25(3):1-4. doi: 10.1109/TASC.2015.2393555
- Ruiz-Ponce G, Arjona MA, Hernandez C, Escarela-Perez R. A review of magnetic gear technologies used in mechanical power transmission. Energies. 2023;16(4):1721. doi: 10.3390/en16041721
- Strasik M, Hull JR, Mittleider JA, et al. An overview of Boeing flywheel energy storage systems with high-temperaturesuperconducting bearings. Superconductor science and technology. 2010;23(3). doi: 10.1088/0953-2048/23/3/034021
- Hull JR. Superconducting bearings. Superconductor Science and Technology. 2000;13(2):R1. doi: 10.1088/0953-2048/13/2/201
- Namburi DK, Shi Y, Cardwell DA. The processing and properties of bulk (RE) BCO high temperature superconductors: current status and future perspectives. Superconductor Science and Technology. 2021;34(5). doi: 10.1088/1361-6668/abde88
- Hussein AAA, Hussein AMA, Hasan NA. Study of the properties of YBCO superconductor compound in various preparation methods: a short review. Journal of Applied Sciences and Nanotechnology. 2023;3(1):65-79. doi: 10.53293/jasn.2022.4867.1156
- Ogawa N, Hirabayashi I, Tanaka S. Preparation of a high-Jc YBCO bulk superconductor by the platinum doped melt growth method. Physica C: Superconductivity. 1991;177(1):101-5. doi: https://doi.org/10.1016/0921-4534(91)90304-H
- Sass F, Dias DHN, Sotelo GG, de Andrade Junior R. Superconducting magnetic bearings with bulks and 2G HTS stacks: comparison between simulations using H and A-V formulations with measurements. Superconductor Science and Technology. 2018;31(2):025006. doi: 10.1088/1361-6668/aa9dc1
- Osipov M, Anishenko I, Starikovskii A, et al. Scalable superconductive magnetic bearing based on non-closed CC tapes windings. Superconductor Science and Technology. 2021;34(3):035033. doi: 10.1088/1361-6668/abda5a
- Coombs TA, Wang Q, Shah A, et al. High-temperature superconductors and their large-scale applications. Nature Reviews Electrical Engineering. 2024;1(12):788-801. doi: 10.1038/s44287-024-00112-y
- Kurbatova E, Kurbatov P, Kuschenko E, et al. Comparison of properties of a bulk HTS and a stack of HTS tapes after FC and ZFC. J. Phys.: Conf. Ser. 2020;1559(1). doi: 10.1088/1742-6596/1559/1/012049
- Molodyk A, Samoilenkov S, Markelov A, et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Scientific Reports. 2021;11(1). doi: 10.1038/s41598-021-81559-z
- Martirosian IV. Osipov MA, Starikovskii AS, Pokrovskii SV, Rudnev IA. Influence of cooling conditions of HTS assembly on the characteristics of a moving maglev system. Modern Transportation Systems and Technologies. 2022;8(4):46-57. doi: 10.17816/transsyst20228446-57
- Shen B, Grilli F, Coombs T. Overview of H-formulation: A versatile tool for modeling electromagnetics in high-temperature superconductor applications. IEEE access. 2020;8:100403-100414. doi: 10.1109/ACCESS.2020.2996177
补充文件
