Counting and diagnostics system for wheelsets of railway rolling stock
- Authors: Shtanke V.V.1, Solomin V.A.1, Solomin A.V.1
-
Affiliations:
- Rostov State Transport University
- Issue: Vol 11, No 1 (2025)
- Pages: 78-97
- Section: Original studies
- URL: https://bakhtiniada.ru/transj/article/view/289345
- DOI: https://doi.org/10.17816/transsyst660876
- ID: 289345
Cite item
Full Text
Abstract
Background. Upgrade of wheelsets counting and diagnostic systems at high speeds.
Aim. Improvement of precision and quality of wheelsets diagnostics.
Materials and Methods. A combination of new designs of the Shtanke magnetoinduction sensor with a microprocessor signal generation unit is proposed. The work employed mathematical modeling using Fourier series and delta-Dirac function.
Results. Software algorithms for calculating and assessing the mechanical condition of wheelsets of rolling stock at high speeds are developed.
Conclusion. A new system for counting and assessing the mechanical condition of wheelsets improves the quality of diagnostics of rolling stock at high speeds.
Full Text
##article.viewOnOriginalSite##About the authors
Veronika V. Shtanke
Rostov State Transport University
Author for correspondence.
Email: arnold.shtanke@yandex.ru
ORCID iD: 0000-0002-7145-5999
SPIN-code: 4745-3051
Head of the Scientific and Innovation Center Transport Safety
Russian Federation, Rostov-on-DonVladimir A. Solomin
Rostov State Transport University
Email: ema@rgups.ru
ORCID iD: 0000-0002-0638-1436
SPIN-code: 6785-9031
Doctor of Technical Sciences, Professor
Russian Federation, Rostov-on-DonAndrei V. Solomin
Rostov State Transport University
Email: vag@kaf.rgups.ru
ORCID iD: 0000-0002-2549-4663
SPIN-code: 7805-9636
Doctor of Technical Sciences, Professor
Russian Federation, Rostov-on-DonReferences
- Perspectives of wheel sensors and axle counting systems. Part I. Zheleznye dorogi mira. 2012;(6):51–57. (In Russ.) Accessed: 20.01.2025. Available from: https://zdmira.com/archive/2012/06#grid-item10 EDN: OXWBPT
- Misharin AS. High-speed railways as the traffic arteries of a Russian giga-metropolis. Transport of the Russian Federation. 2016;2-3(63–64):7–10. (In Russ.) EDN: WDJQDL
- Petrov KS, Kondratenko EV, Petrov VV. Development of a system of magnetic induction sensors for diagnosing wear of the rolling stock wheelset crest. Journal of Instrument Engineering. 2022;65(8):585–596. (In Russ.) doi: 10.17586/0021-3454-2022-65-8-585-596
- Shapovalova YuV, Pustovoi YuE, Egizian AA, Shvalov DV. Fault modelling magneto-inductive axis counting sensors. In: Proceedings of the 2nd International Scientific-Practical Conference “Digital infocommunication technologies”, 2022 Dec 16. Rostov-on-Don. Rostov-on-Don: RSTU; 2022:279–283. (In Russ.). doi: 10.46973/978-5-907295-76-6_2022_279
- Solomin V, Shtanke V. Innovations in diagnostics of wheel pairs of rolling stock by track magnetic induction sensors. Railway Equipment. 2024;(1)65:32–37. (In Russ.). Accessed: 20.01.2025. Available from: https://techzd.ru/upload/iblock/979/5o516xkgnolgjzuphkqt5rwuqcg0dsj8.pdf
- Patent RUS №2808857/ 05.12.23. Byul. № 35. Shtanke V. Method for diagnosing the technical condition of wheel pairs and bogies of railway cars. (In Russ.) EDN: OHIURW
- Sergienko AB. Digital signal processing. 3rd ed. Saint Petersburg: BHV-Peterburg; 2011. (In Russ.)
- Bocharova AA, Zajko NJu. Mathematical foundations of signal processing. Vladivostok: DVFU; 2022. (In Russ.) Accessed: 20.01.2025. Available from: https://www.dvfu.ru/upload/medialibrary/246/dbo3o89u2c5u83hyw980qzxdwrdo97k3/Bocharova_A.A.,_Zajko_N.YU._Matematicheskie_osnovy_obrabotki_signalov.pdf?ysclid=m6ot9z42sr584452943
- Javorski M, Ziade T. Python. Best Practices and Tools Expert Pothon Programming. Saint Petersburg: Piter; 2024. (In Russ.) Accessed: 20.01.2025. Available from: https://library.cbr.ru/catalog/lib/books/955391/?ysclid=m6otr999ej299552641
- Lafore R. Object-oriented programming in C++. Saint Petersburg: Piter; 2022. (In Russ.)
- Frik PG. Processing and analysis of signals and images in physical experiments. Perm’: PSSRU; 2023. (In Russ.) Accessed: 20.01.2025. Available from: http://www.psu.ru/files/docs/science/books/uchebnie-posobiya/Frik-Obrabotka-i-analiz-signalov-i-izobrazhenij-v-fizicheskih-eksperimentah.pdf
- Sammerfild M. Programming in Pothon 3. Detailed guide. Saint Petersburg, Moscow: Simvol Pljus; 2009. (In Russ.) Available from: http://uchcom7.botik.ru/L/prog/python/python_08.pdf Accessed: 20.01.2025.
- Kobernichenko VG. Fundamentals of Digital Signal Processing. Ekaterinburg: UrFU, 2018. (In Russ.) Accessed: 20.01.2025. Available from: https://elar.urfu.ru/bitstream/10995/65261/1/978-5-7996-2464-4_2018.pdf?ysclid=m6ous3q1dx398458934
- Revinskaja OG. Fundamentals of data processing in the MatLab 2013 environment. Part 1. Tomsk: TomSU; 2015. (In Russ.) Accessed: 20.01.2025. Available from: https://vital.lib.tsu.ru/vital/access/services/Download/vtls:000521578/SOURCE1
- Tolmachev DE. Tarasev AA, Turygina VF. Methods of object-oriented analysis and programming in the management of economic systems. Ekaterinburg: UrFU; 2023. (In Russ.) EDN: AXITIF
Supplementary files
