Choosing of neural network architecture for electronic differential system of electric vehicle
- Authors: Lisov A.A.1, Vozmilov A.G.1, Gundarev K.A.1
-
Affiliations:
- South Ural State University
- Issue: Vol 10, No 4 (2024)
- Pages: 446-462
- Section: Reviews
- URL: https://bakhtiniada.ru/transj/article/view/277918
- DOI: https://doi.org/10.17816/transsyst635379
- ID: 277918
Cite item
Full Text
Abstract
Aim. To study various network architecture options for implementing an electronic differential system in an electric vehicle.
Materials and Methods. The study primarily used comparative analysis to identify the most rational neural network (NN) architecture for processing numerical data structured as arrays.
Results. The analysis revealed that a deep learning neural network is the most effective choice. For future developments, and after experimental confirmation, a recurrent neural network could also be a viable option.
Conclusion. The study confirmed that achieving the desired goal is not feasible using convolutional neural networks, large language models, random vector functional communication networks and radial-basis functional NNs.
Full Text
##article.viewOnOriginalSite##About the authors
Andrey A. Lisov
South Ural State University
Author for correspondence.
Email: lisov.andrey2013@yandex.ru
ORCID iD: 0000-0001-7282-8470
SPIN-code: 1956-3662
postgraduate student
Russian Federation, ChelyabinskAlexander G. Vozmilov
South Ural State University
Email: vozmiag@rambler.ru
ORCID iD: 0000-0002-1292-3975
SPIN-code: 2893-8730
Professor, Doctor of Technical Sciences
Russian Federation, ChelyabinskKirill A. Gundarev
South Ural State University
Email: pioneer03.95@mail.ru
ORCID iD: 0009-0004-8358-1329
SPIN-code: 1238-1158
postgraduate student
Russian Federation, ChelyabinskReferences
- Lisov A.A. Development of an electronic differential system for electric vehicles based on deep neural network. Modern Transportation Systems and Technologies. 2024;10(3):351–367. (in Russ.). doi: 10.17816/transsyst634127
- Lisov AA, Kulganatov AZ, Panishev SA. Using convolutional neural networks for acoustic based emergency vehicle detection. Modern Transportation Systems and Technologies. 2023;9(1):95–107 (in Russ.). doi: 10.17816/transsyst20239195-107
- Cirrincione M, Pucci M, Cirrincione G, Capolino GA. Sensorless control of induction machines by a new neural algorithm: The TLS EXIN neuron. IEEE Transactions on Industrial Electronics. 2007;54(1):127–149. doi: 10.1109/TIE.2006.888774
- Su D, Zhang H, Chen H, Yi J, Chen PY, Gao Y. Is robustness the cost of accuracy? A comprehensive study on the robustness of 18 deep image classification models. Proceedings of the European conference on computer vision (ECCV). 20184; 631–648.
- Gama J, Žliobaitė I, Bifet A, et al. A survey on concept drift adaptation. ACM computing surveys (CSUR). 2014;46(4):1–37. doi: 10.1145/252381
- Berkenkamp F, Turchetta M, Schoellig A, Krause A. Safe model-based reinforcement learning with stability guarantees. Advances in neural information processing systems. 2017;30.
- Jarrahi MH. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons. 2018;61(4):577–586.
- Khan J, Wei JS, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature medicine. 2001;7(6):673–679. doi: 10.1038/89044
- Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015;427–436. doi: 10.1016/j.bushor.2018.03.007
- Rosenblatt F. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. New York: Cornell Aeronautical Lab Inc Buffalo; 1961.
- Minsky M, Papert S. Perceptrons. An Introduction to Computational Geometry. Cambridge: MIT Press; 1969.
- Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructures of Cognition. 1986;1:318–362.
- Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection. In: Advances in neural information processing systems. 2013;26.
- Rolnick D, Tegmark M. The power of deeper networks for expressing natural functions. In: arXiv preprint. 2017. doi: 10.48550/arXiv.1705.05502
- Serrano-Pérez JD, Fernández-Anaya G, Carrillo-Moreno S, Yu W. New results for prediction of chaotic systems using deep recurrent neural networks. Neural Processing Letters. 2021;53:1579–1596. doi: 10.1007/s11063-021-10466-1
- Bucci MA, Semeraro O, Allauzen A, et al. Control of chaotic systems by deep reinforcement learning. Proceedings of the Royal Society A. 2019;475(2231). doi: 10.1098/rspa.2019.0351
- Chai X, Gan Z, Yuan K, et al. A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Computing and Applications. 2019;31(1):219–237. doi: 10.1007/s00521-017-2993-9
- Kombrink S, Mikolov T, Karafiát M, Burget L. Recurrent Neural Network Based Language Modeling in Meeting Recognition. Interspeech. 2011;11:2877–2880.
- Hagan MT, De Jesús O, Schultz R, et al. Training recurrent networks for filtering and control. Recurrent neural networks: Design and applications. 1999:311–340.
- Parlos AG, Menon SK, Atiya A. An algorithmic approach to adaptive state filtering using recurrent neural networks. IEEE transactions on neural networks. 2001;12(6):1411–1432. doi: 10.1109/72.963777
- Van den Oord A, Dieleman S, Schrauwen B. Deep content-based music recommendation. In: Advances in neural information processing systems; 2013.
- Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitasks learning. In: 25th international conference on Machine learning. 2008:160–167. doi: 10.1145/1390156.1390177
- Avilov O, Rimbert S, Popov A, Bougrain L. Deep learning techniques to improve intraoperative awareness detection from electroencephalographic signals. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020:142–145. doi: 10.1109/EMBC44109.2020.9176228
- Tsantekidis A, Passalis N, Tefas A, et al. Forecasting stock prices from the limit order book using convolutional neural networks. In: 19th conference on business informatics (CBI). 2017;1:7–12. doi: 10.1109/CBI.2017.23
- Wang Y, Li Z, Wang L, Wang M. A Scale Invariant Feature Transform Based Method. J. Inf. Hiding Multim. Signal Process. 2013;4(2):73–89.
- Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition (CVPR’05). IEEE; 2005;1:886–893. doi: 10.1109/CVPR.2005.177
- Salyp BYu. Decoding methods for open text generation in large language models. Bulletin of Science and Education. 2023;10(141):8–14. (in Russ.).
- Kasneci E, Sebler K, Küchemann S, et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences. 2023;103. doi: 10.1016/j.lindif.2023.102274
- Igelnik B, Pao Y-H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Network. 1995;6:1320–1329. doi: 10.1109/72.471375
- Pao YH, Park GH, Sobajic DJ. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing. 1994;6:163–180. doi: 10.1016/0925-2312(94)90053-1
- Pao YH, Phillips SM. The functional link net and learning optimal control. Neurocomputing. 1995;9:149–164. doi: 10.1016/0925-2312(95)00066-F
- Powell MJ. Radial Basis Functions for Multivariable Interpolation: A Review. In: Mason J.C., Cox M.G. Eds. Algorithms for Approximation. Oxford: Clarendon Press; 1987. P. 143–167.
- Lowe D, Broomhead D. Multivariable functional interpolation and adaptive networks. Complex systems. 1988;2(3):321–355.
- Aouiti C, Alimi AM, Maalej AA. Genetic-designed beta basis function neural network for multi-variable functions approximation. Systems Analysis Modelling Simulation. 2002;42(7):975–1009.
- Montazer GA, Giveki D, Karami M, Rastegar H. Radial basis function neural networks: A review. Comput. Rev. J. 2018;1(1):52–74.
Supplementary files
