Simulation of the maglev suspension dynamic characteristics during movement, acceleration and deceleration

封面

如何引用文章

全文:

详细

Background: When developing high-speed transport systems based on the magnetic levitation phenomenon, it is necessary to take into account a huge number of factors that affect the characteristics and stability of this type systems. One of the simplest and most convenient methods for achieving these goals is numerical simulation.

Aim: simulation of the dynamic characteristics of a magnetic suspension based on a high-temperature superconductor during movement, acceleration and deceleration.

Methods: numerical analysis of the magnetic levitation system was performed by the finite element method in the Comsol Multiphysics engineering simulation software.

Results: during straight motion, lateral vibrations do not exceed 15 %, and the suspension speed and mass increase does not have a significant effect on the vibrations amplitude. In the case of vertical oscillations, the platform mass and speed increase leads to an increase in the vibration resistance of the system. With an increase in the turning radius of the track, the maximum possible speed of entering the turn without detaching the suspension from the magnetic track increases non-linearly.

Conclusion: The developed numerical model makes it possible to predict the dynamic characteristics of levitation transport and can be applied to systems of various scales.

作者简介

Irina Martirosian

National research nuclear university MEPHI; Sirius University; Kazan Federal University

编辑信件的主要联系方式.
Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN 代码: 3368-8809

engineer

俄罗斯联邦, Moscow; Sirius, Krasnodar region; Kazan

Sergey Pokrovskii

National research nuclear university MEPHI; Sirius University; Kazan Federal University

Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN 代码: 6643-7817

Candidate of Physical and Mathematical Sciences, Assistant

俄罗斯联邦, Moscow; Sirius, Krasnodar region; Kazan

Maxim Osipov

National research nuclear university MEPHI; Sirius University

Email: max.vfk@gmail.com
ORCID iD: 0000-0002-8981-5606
SPIN 代码: 4776-7939

engineer

俄罗斯联邦, Moscow; Sirius, Krasnodar region

Alexander Starikovskii

National research nuclear university MEPHI; Sirius University

Email: sannyok1995@gmail.com
ORCID iD: 0000-0002-7605-7578
SPIN 代码: 9493-3256

Graduate

俄罗斯联邦, Moscow; Sirius, Krasnodar region

Igor Rudnev

National research nuclear university MEPHI; Sirius University; Kazan Federal University

Email: iarudnev@mephi.ru
ORCID iD: 0000-0002-5438-2548
SPIN 代码: 2070-5265

Doctor of Physical and Mathematical Sciences, Professor

俄罗斯联邦, Moscow; Sirius, Krasnodar region; Kazan

参考

  1. Nagaya K, Tsukagoshi M, Kosugi Y, Murakami M. VIBRATION CONTROL FOR A HIGH-Tc SUPERCONDUCTING NON-LINEAR LEVITATION SYSTEM. J SOUND VIB. 1997;208(2):299-311.doi: 10.1006/jsvi.1997.1223
  2. Jang-Horng Y, Postrekhin E, Ki Bui M, et al. Vibration isolation for space structures using HTS-magnet interaction. IEEE T APPL SUPERCON. 1999;9(2):908-10. doi: 10.1109/77.783444
  3. Brandt EH. Levitation in Physics. Science. 1989;243(4889):349-55. doi: 10.1126/science.243.4889.349
  4. Moon FC. Superconducting Levitation: Applications to Bearing & Magnetic Transportation 1994 August 01, 1994. 310 p. Available from https://ui.adsabs.harvard.edu/abs/1994slab.book.....M/
  5. Ma K, Postrekhin YV, Chu W-K. Superconductor and magnet levitation devices. REV SCI INSTRUM. 2003;74:4989-5017. doi: 10.1063/1.1622973
  6. Hull JR. Superconducting bearings. SUPERCOND SCI TECH (Online). 2000;13(2):R1-R15. doi:https:10.1088/0953-2048/13/2/201
  7. Wang J, Wang S, Zeng Y, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C. 2002;378-381:809-14. doi: 10.1016/S0921-4534(02)01548-4
  8. Deng Z, Zhang W, Zheng J, et al. A High-Temperature Superconducting Maglev Ring Test Line Developed in Chengdu, China. IEEE T APPL SUPERCON. 2016;26(6):1-8. doi: 10.1109/TASC.2016.2555921
  9. Li H, Deng Z, Ke Z, et al. Curve Negotiation Performance of High-Temperature Superconducting Maglev Based on Guidance Force Experiments and Dynamic Simulations. IEEE T APPL SUPERCON. 2020;30(1):1-11. doi: 10.1109/TASC.2019.2932283
  10. Lee S, Petrykin V, Molodyk A, Samoilenkov SV, et al. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables. SUPERCOND SCI TECH. 2014;27:044022. doi: 10.1088/0953-2048/27/4/044022
  11. Dular P, Remacle J, Henrotte F, et al. Magnetostatic and magnetodynamic mixed formulations compared with conventional formulations. IEEE T MAGN. 1997;33(2):1302-5. doi: 10.1109/20.582494
  12. Bíró O. Edge element formulations of eddy current problems. COMPUT METHOD APPL M. 1999;169(3):391-405. doi:https:10.1016/S0045-7825(98)00165-0
  13. Bortot L, Auchmann B, Garcia IC, et al. A Coupled A–H Formulation for Magneto-Thermal Transients in High-Temperature Superconducting Magnets. IEEE T APPL SUPERCON. 2020;30(5):1-11. doi: 10.1109/TASC.2020.2969476
  14. Strickland N, Wimbush S. The magnetic-field dependence of the critical current: what we really need to know. IEEE T APPL SUPERCON. 2016;PP:1. doi: 10.1109/TASC.2016.2636561
  15. Zhang M, Matsuda K, Coombs TA. New application of temperature-dependent modelling of high temperature superconductors: Quench propagation and pulse magnetization. JPN J APPL PHYS. 2012;112(4):043912. doi: 10.1063/1.4747925
  16. Anischcenko I, Pokrovskii S, Rudnev I, Osipov M. Modeling of magnetization and levitation force of HTS tapes in magnetic fields of complex configurations. SUPERCOND SCI TECH. 2019;32(10):105001. doi: 10.1088/1361-6668/ab2bbe

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1

下载 (59KB)
3. Fig. 2

下载 (68KB)
4. Fig. 3

下载 (62KB)
5. Fig. 4

下载 (44KB)
6. Fig. 5

下载 (41KB)
7. Fig. 6

下载 (126KB)

版权所有 © Martirosian I.V., Pokrovskii S.V., Osipov M.A., Starikovskii A.S., Rudnev I.A., 2022

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

link to the archive of the previous title

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».