Simulation of the maglev suspension dynamic characteristics during movement, acceleration and deceleration
- 作者: Martirosian I.V.1,2,3, Pokrovskii S.V.1,2,3, Osipov M.A.1,2, Starikovskii A.S.1,2, Rudnev I.A.1,2,3
-
隶属关系:
- National research nuclear university MEPHI
- Sirius University
- Kazan Federal University
- 期: 卷 8, 编号 3 (2022)
- 页面: 63-77
- 栏目: Original studies
- URL: https://bakhtiniada.ru/transj/article/view/111143
- DOI: https://doi.org/10.17816/transsyst20228363-77
- ID: 111143
如何引用文章
全文:
详细
Background: When developing high-speed transport systems based on the magnetic levitation phenomenon, it is necessary to take into account a huge number of factors that affect the characteristics and stability of this type systems. One of the simplest and most convenient methods for achieving these goals is numerical simulation.
Aim: simulation of the dynamic characteristics of a magnetic suspension based on a high-temperature superconductor during movement, acceleration and deceleration.
Methods: numerical analysis of the magnetic levitation system was performed by the finite element method in the Comsol Multiphysics engineering simulation software.
Results: during straight motion, lateral vibrations do not exceed 15 %, and the suspension speed and mass increase does not have a significant effect on the vibrations amplitude. In the case of vertical oscillations, the platform mass and speed increase leads to an increase in the vibration resistance of the system. With an increase in the turning radius of the track, the maximum possible speed of entering the turn without detaching the suspension from the magnetic track increases non-linearly.
Conclusion: The developed numerical model makes it possible to predict the dynamic characteristics of levitation transport and can be applied to systems of various scales.
作者简介
Irina Martirosian
National research nuclear university MEPHI; Sirius University; Kazan Federal University
编辑信件的主要联系方式.
Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN 代码: 3368-8809
engineer
俄罗斯联邦, Moscow; Sirius, Krasnodar region; KazanSergey Pokrovskii
National research nuclear university MEPHI; Sirius University; Kazan Federal University
Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN 代码: 6643-7817
Candidate of Physical and Mathematical Sciences, Assistant
俄罗斯联邦, Moscow; Sirius, Krasnodar region; KazanMaxim Osipov
National research nuclear university MEPHI; Sirius University
Email: max.vfk@gmail.com
ORCID iD: 0000-0002-8981-5606
SPIN 代码: 4776-7939
engineer
俄罗斯联邦, Moscow; Sirius, Krasnodar regionAlexander Starikovskii
National research nuclear university MEPHI; Sirius University
Email: sannyok1995@gmail.com
ORCID iD: 0000-0002-7605-7578
SPIN 代码: 9493-3256
Graduate
俄罗斯联邦, Moscow; Sirius, Krasnodar regionIgor Rudnev
National research nuclear university MEPHI; Sirius University; Kazan Federal University
Email: iarudnev@mephi.ru
ORCID iD: 0000-0002-5438-2548
SPIN 代码: 2070-5265
Doctor of Physical and Mathematical Sciences, Professor
俄罗斯联邦, Moscow; Sirius, Krasnodar region; Kazan参考
- Nagaya K, Tsukagoshi M, Kosugi Y, Murakami M. VIBRATION CONTROL FOR A HIGH-Tc SUPERCONDUCTING NON-LINEAR LEVITATION SYSTEM. J SOUND VIB. 1997;208(2):299-311.doi: 10.1006/jsvi.1997.1223
- Jang-Horng Y, Postrekhin E, Ki Bui M, et al. Vibration isolation for space structures using HTS-magnet interaction. IEEE T APPL SUPERCON. 1999;9(2):908-10. doi: 10.1109/77.783444
- Brandt EH. Levitation in Physics. Science. 1989;243(4889):349-55. doi: 10.1126/science.243.4889.349
- Moon FC. Superconducting Levitation: Applications to Bearing & Magnetic Transportation 1994 August 01, 1994. 310 p. Available from https://ui.adsabs.harvard.edu/abs/1994slab.book.....M/
- Ma K, Postrekhin YV, Chu W-K. Superconductor and magnet levitation devices. REV SCI INSTRUM. 2003;74:4989-5017. doi: 10.1063/1.1622973
- Hull JR. Superconducting bearings. SUPERCOND SCI TECH (Online). 2000;13(2):R1-R15. doi:https:10.1088/0953-2048/13/2/201
- Wang J, Wang S, Zeng Y, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C. 2002;378-381:809-14. doi: 10.1016/S0921-4534(02)01548-4
- Deng Z, Zhang W, Zheng J, et al. A High-Temperature Superconducting Maglev Ring Test Line Developed in Chengdu, China. IEEE T APPL SUPERCON. 2016;26(6):1-8. doi: 10.1109/TASC.2016.2555921
- Li H, Deng Z, Ke Z, et al. Curve Negotiation Performance of High-Temperature Superconducting Maglev Based on Guidance Force Experiments and Dynamic Simulations. IEEE T APPL SUPERCON. 2020;30(1):1-11. doi: 10.1109/TASC.2019.2932283
- Lee S, Petrykin V, Molodyk A, Samoilenkov SV, et al. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables. SUPERCOND SCI TECH. 2014;27:044022. doi: 10.1088/0953-2048/27/4/044022
- Dular P, Remacle J, Henrotte F, et al. Magnetostatic and magnetodynamic mixed formulations compared with conventional formulations. IEEE T MAGN. 1997;33(2):1302-5. doi: 10.1109/20.582494
- Bíró O. Edge element formulations of eddy current problems. COMPUT METHOD APPL M. 1999;169(3):391-405. doi:https:10.1016/S0045-7825(98)00165-0
- Bortot L, Auchmann B, Garcia IC, et al. A Coupled A–H Formulation for Magneto-Thermal Transients in High-Temperature Superconducting Magnets. IEEE T APPL SUPERCON. 2020;30(5):1-11. doi: 10.1109/TASC.2020.2969476
- Strickland N, Wimbush S. The magnetic-field dependence of the critical current: what we really need to know. IEEE T APPL SUPERCON. 2016;PP:1. doi: 10.1109/TASC.2016.2636561
- Zhang M, Matsuda K, Coombs TA. New application of temperature-dependent modelling of high temperature superconductors: Quench propagation and pulse magnetization. JPN J APPL PHYS. 2012;112(4):043912. doi: 10.1063/1.4747925
- Anischcenko I, Pokrovskii S, Rudnev I, Osipov M. Modeling of magnetization and levitation force of HTS tapes in magnetic fields of complex configurations. SUPERCOND SCI TECH. 2019;32(10):105001. doi: 10.1088/1361-6668/ab2bbe
补充文件
