The role of mitochondrial DNA in the pathogenesis of cardiovascular diseases

Cover Page

Cite item

Full Text

Abstract

Diseases of the cardiovascular system keeps the lead among the main causes of invalidity, disability and mortality of the population. There is a steady increase in cardiovascular diseases, that is why the identification of new markers, that would allow calculating the risks of complications and associated pathological conditions, is one of the most important tasks of modern fundamental and applied medicine. The paper presents current information on the relationship between the qualitative and quantitative characteristics of mitochondrial DNA with the risk of organ failure. The reasons for the body's immune response to the mitochondrial DNA presence outside the cell are considered. The question of mitochondrial DNAs role in the pathogenesis of cardiovascular pathology and inflammatory processes is highlighted. Contradictory information about the change in the amount of freely circulating mitochondrial DNA during the development of organ failure was revealed. However, all authors agree that the number of mitochondrial DNA copies indicates disorders associated with the provision of vital functions of cells, organs and tissues. The study shows that the level of freely circulating mitochondrial DNA in blood plasma, which is currently used to predict the development of complications and mortality in a number of different diseases, is a promising nonspecific marker of cytolytic processes. A comprehensive study of cytological, biochemical and molecular biological indicators at various (especially at early) stages of organ failure development, as well as during the cardiovascular diseases establishment, will provide new important information about the cellular mechanisms of disease pathogenesis and will form the basis for the development of early diagnostic markers and new therapeutic schemes.

About the authors

Victoria V. Kireeva

Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Hospital of the Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: ms.kireevav@mail.ru
ORCID iD: 0000-0003-3696-9799

M.D., Cand. Sci. (Med.), Senior Researcher, Deputy Chief Physician for Outpatient Work, Depart. of Biomedical Research and Technologies

Russian Federation, Irkutsk, Russia; Irkutsk, Russia

Svetlana A. Lepekhova

Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: lepekhova_sa@mail.ru
ORCID iD: 0000-0002-7961-4421

Doct. Sci. (Biol.), Head, Depart. Biomedical Research and Technologies

Russian Federation, Irkutsk, Russia

Pavel O. Inozemcev

Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: p.inozemcev@rambler.ru
ORCID iD: 0000-0002-6623-0998

Cand. Sci. (Pharm.), Senior Researcher, Depart. of Biomedical Research and Technologies

Russian Federation, Irkutsk, Russia

Yuri K. Usoltsev

Hospital of the Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: bolnicasoran@mail.ru
ORCID iD: 0000-0002-2826-5911

M.D., Cand. Sci. (Med.), Chief Physician

Russian Federation, Irkutsk, Russia

Elena A. Trofimova

Hospital of the Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: tea.med@mail.ru
ORCID iD: 0000-0001-6629-0168

M.D., Cand. Sci. (Med.), Deputy Chief Physician for Clinical Expert Work

Russian Federation, Irkutsk, Russia

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. doi: 10.1016/j.jacc.2020.11.010.
  2. Costantino S, Paneni F, Cosentino F. Ageing, meta­bolism and cardiovascular disease. J Physiol. 2016;594(8):2061–2073. doi: 10.1113/JP270538.
  3. Balakumar P, Maung UK, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–609. doi: 10.1016/j.phrs.2016.09.040.
  4. Don ES, Tarasov AV, Epshtein OI, Tarasov SA. The biomarkers in medicine: search, choice, study and validation. Klinicheskaya laboratornaya diagnostika. 2017;62(1):52–59. (In Russ.) doi: 10.18821/0869-2084- 2017-62-1-52-59.
  5. Radivilko AS, Grigoryev EV, Shukevich DL, Plotnikov GP. Multiple organ fai­lure: early diagnosis and prognosis. Anesteziologiya i rea­nimatologiya. 2018;(6):15–21. (In Russ.) doi: 10.17116/anaesthesiology201806115.
  6. Ostanko VL, Kalacheva TP, Kalyuzhina EV, Livshits IK, Shalovay AA, Chernogoryuk GE, Bespalova ID, Yunusov RSh, Lukashova LV, Pomogaeva AP, Teplyakov AT, Kalyuzhin VV. Biological markers in risk stratification and progression of cardiovascular di­sease: pre­sent and future. The Bulletin of the Siberian medi­cine. 2018;17(4):264–280. (In Russ.) doi: 10.20538/1682-0363-2018-4-264-280.
  7. Chaulin AM. New Biomarkers of Cardiovascular Disea­ses (Literature Review). Part 1. Bulletin of science and practice. 2021;7(2):130–151. (In Russ.) doi: 10.33619/2414-2948/63.
  8. Larina VN, Lunev VI. The Va­lue of Biomarkers in the Diagnosis and Prognosis of Heart Fai­lure in Older Age. The Russian Archives of Internal Me­dicine. 2021;11(2):98–110. (In Russ.) doi: 10.20514/2226-6704-2021-11-2-98-110.
  9. Inozemtsev PO, Fedo­rova LI, Stankevich VK. The influence of mitochondrial dysfunction on the development of liver failure with fatty degeneration. In: Sbornik statey po itogam raboty Mezhvuzovskogo nauchnogo kongressa. (Collection of articles on the results of the work of the Interuniversity Scientific Congress.) Moscow: Vysshaya shkola: nauchnye issledovaniya; 2019. р. 98–102. (In Russ.)
  10. Lepekhova SA, Goldberg OA, Prokop'ev MV, Kurgansky IS, Kireeva VV, Inozemcev PO, Apartsin KA. Effect of toxic liver da­mage on structural changes in mitochondria and intracellular organelles. Experimental & clinical gastroenterology. 2019;(3):77–80. (In Russ.) doi: 10.31146/1682-8658-ecg-163-3-77-80.
  11. Duvvuri B, Lood C. Cell-free DNA as a biomar­ker in autoimmune rheumatic diseases. Front Immunol. 2019;10:502. doi: 10.3389/fimmu.2019.00502.
  12. Harrington JS, Huh JW, Schenck EJ, Nakahira K, Siempos II, Choi AMK. Circulating mitochondrial DNA as predictor of mortality in critically ill patients: A systema­tic review of clinical studies. Chest. 2019;156(6):1120–1136. doi: 10.1016/j.chest.2019.07.014.
  13. Wiersma M, van Marion DMS, Bouman EJ, Li J, Zhang D, Ramos KS, Lanters EAH, de Groot NMS, Brundel BJJM. Cell-free circulating mitochondrial DNA: A potential blood-based marker for atrial fibrillation. Cells. 2020;9(5):1159. doi: 10.3390/cells9051159.
  14. Padilla S, Tana L, Gallardo S, Arcos MJ, Yepez M, Endara P, Bovera M, Grunauer M, Teran E, Caicedo A. Circulating mtDNA levels as an early marker for metabolic syndrome. Free Radic Biol Med. 2017;108:74. doi: 10.1016/j.freeradbiomed.2017.04.249.
  15. Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion. 2013;13(5):481–492. doi: 10.1016/j.mito.2012.10.011.
  16. Panov AV, Golu­benko MV, Darenskaya MA, Kolesnikov SI. The Origin of Mitochondria and their Role in the Evolution of Life and Human Health. Acta Biomedica Scientifica. 2020;5(5):12–25. (In Russ.) doi: 10.29413/ABS.2020-5.5.2.
  17. Mala­khov VV. The great symbiosis: the origin of the eukaryotic cell. V mire nauki. 2004;(2):70–79. (In Russ.)
  18. Brown JA, Sammy MJ, Ballinger SW. An evolutio­nary, or “mitocentric” perspective on cellular function and disease. Redox Biol. 2020;36:101568. doi: 10.1016/j.redox.2020.101568.
  19. Mereschkowsky C. Über Natur und Ursprung der Chromatophoren imPflanzenreiche. Biol Centralbl. 1905;25:593–604.
  20. Portier P. Les Symbiotes. Nature. 1919;103:482–483. doi: 10.1038/103482b0.
  21. Wallin IE. Symbionticism and the origin of species. Baltimore: Williams & Wilkins Company; 1927. 170 p. doi: 10.5962/bhl.title.11429.
  22. Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2001;2(6):1–5. doi: 10.1186/gb-2001-2-6-reviews1018.
  23. Gray MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol. 2012; 4(9):a011403. doi: 10.1101/cshperspect.a011403.
  24. Litoshenko AYa. Mitochondrial Evolution. Cytology and genetics. 2002;36(5):49. (In Russ.)
  25. Maksimovich NE, Bon EI, Dremza IK. Research into the functions of mitochondria in experiment. Journal biomed. 2019;15(3):71–77. (In Russ.) doi: 10.33647/2074-5982-15-3-71-77.
  26. Israpilova AI, Osmanova PM, Gadzhieva AK, Magomedova KM. Modern views on the role of mitochondria in the functioning of cells. Mezhdunarodnyy studencheskiy nauchnyy vestnik. 2020;(5):17. (In Russ.)
  27. Horbay R, Bilyy R. Mitochondrial dynamics during cell cycling. Apoptosis. 2016;21(12):1327–1335. doi: 10.1007/s10495-016-1295-5.
  28. Bon LI, Maksimovich NE. Role of mitochondria in cells energetic and characterizing its molecular markers. Orenburgskiy meditsinskiy vestnik. 2019;7(1):47–52. (In Russ.)
  29. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335–343. doi: 10.1038/nature12985.
  30. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol. 2014;15(10):634–646. doi: 10.1038/nrm3877.
  31. Gonçalves VF. Mitochondrial genetics. Adv Exp Med Biol. 2019;1158:247–255. doi: 10.1007/978-981-13-8367-0_13.
  32. Igamberdyev AU. The unique genetic system of mitochondria. Sorosovskiy obrazovatel’nyy zhurnal. 2000;(1):32–36. (In Russ.)
  33. Satoh M, Kuroiwa T. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res. 1991;196(1):137–140. doi: 10.1016/0014-4827(91)90467-9.
  34. Iborra FJ, Kimura H, Cook PR. The functional organization of mitochondrial genomes in human cells. BMC Biology. 2004;2(1):1–14. doi: 10.1186/1741-7007-2-9.
  35. Mazunin IO, Levitskiy SA, Patrushev MV, Kamenskiy PA. Mitochondrial matrix processes. Biochemistry (Moscow). 2015;80(11): 1418–1428. doi: 10.1134/S0006297915110036.
  36. Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, Paré A, Rousseau M, Naika GS, Lévesque T, Laflamme C, Marcoux G, Lambeau G, Farndale RW, Pouliot M, Hamzeh-Cognasse H, Cognasse F, Garraud O, Nigrovic PA, Guderley H, Lacroix S, Thibault L, Semple JW, Gelb MH, Boilard E. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124(14):2173–2183. doi: 10.1182/blood-2014-05-573543.
  37. Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J, Pearson M, Chapman J, Sesaki H, Carlin LM, Passos JF, Wheeler AP, Oberst A, Ryan KM, Tait SW. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 2018;37(17):e99238. doi: 10.15252/embj.201899238.
  38. Van Linthout S, Tschöpe C. Inflammation — cause or consequence of heart failure or both? Current Heart Failure Reports. 2017;14(4):251–265. doi: 10.1007/s11897-017-0337-9.
  39. Grigoriev EV, Salakhov RR, Golubenko MV, Ponasenko AV, Shukevich DL, Matveeva VG, Radivilko AS, Tsepokina AV, Velikanova EA, Kornelyuk RA, Ivkin AA. Mitokhondrial'naya DNK kak kandidatnyy DAMP pri kriticheskikh sostoyaniyakh. Bulletin of Siberian Medicine. 2019;18(3):134–143. (In Russ.) doi: 10.20538/1682-0363-2019-3-134-14330.
  40. Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J. Lab for trauma and surgical infections. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci. 2019;236:116464. doi: 10.1016/j.lfs.2019.05.020.
  41. Qiongyuan Hu, Jianan Ren, Jie Wu, Guanwei Li, Xiu­wen Wu, Song Liu, Gefei Wang, Guosheng Gu, Jieshou Li. Elevated levels of plasma mitochondrial DNA are associated with clinical outcome in intra-abdominal infections caused by severe trauma. Surg Infect. 2017;18(5):610–618. doi: 10.1089/sur.2016.276.
  42. Pérez-Treviño P, Velásquez M, García N. Mecha­nisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165761. doi: 10.1016/j.bbadis.2020.165761.
  43. Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, Rehman J, Malik AB. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity. 2020;52(3):475–486.e5. doi: 10.1016/j.immuni.2020.02.002.
  44. Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21(4):e49799. doi: 10.15252/embr.201949799.
  45. Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, Hirokawa N, Nangaku M, Inagi R. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 2019;29(5):1261–1273.e6. doi: 10.1016/j.celrep.2019.09.050.
  46. West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389–402. doi: 10.1038/nri2975.
  47. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022.
  48. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406–417. doi: 10.1016/j.immuni.2015.02.002.
  49. Nakahira K, Hisata S, Choi AM. The roles of mitochondrial damage-associated molecular patterns in di­seases. Antioxid Redox Signal. 2015;23(17):13291350. doi: 10.1089/ars.2015.6407.
  50. Hu Q, Zhou Q, Wu J, Wu X, Ren J. The role of mitochondrial DNA in the development of ischemia reperfusion injury. Shock. 2019;51(1):52–59. doi: 10.1097/SHK.0000000000001190.
  51. Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34(1):55–59. doi: 10.1097/SHK.0b013e3181cd8c08.
  52. Thurairajah K, Briggs GD, Balogh ZJ. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. Eur J Trauma Emerg Surg. 2018;44(3):325–334. doi: 10.1007/s00068-018-0954-3.
  53. Gan L, Chen X, Sun T, Li Q, Zhang R, Zhang J, Zhong J. Significance of serum mtDNA concentration in lung injury induced by hip fracture. Shock. 2015;44(1):52–57. doi: 10.1097/SHK.0000000000000366.
  54. Tsuji N, Tsuji T, Ohashi N, Kato A, Fujigaki Y, Yasuda H. Role of mitochondrial DNA in septic AKI via Toll-like receptor 9. J Am Soc Nephrol. 2016;27(7):2009–2020. doi: 10.1681/ASN.2015040376.
  55. Myrzashaeva TN. Free-circulating mitochondrial DNA as a potential biomarker in the pathogenesis of COPD. Eurasian Union of Scientists. 2019;(4-7):18–21. (In Russ.)
  56. Zhang J, Wang J, Wang X, Liu Z, Ren J, Sun T. Early surgery increases mitochondrial DNA release and lung injury in a model of elderly hip fracture and chro­nic obstructive pulmonary disease. Exper Ther Med. 2017;14(5):4541–4546. doi: 10.3892/etm.2017.5044.
  57. Schiffer KT, Rice MC, Oromendia C, Zhang W, Peters SP, Woodruff P, Cooper CB, Bowler RP, Comellas AP, Criner GJ, Paine R, Hansel NN, Han MK, Barr RG, Krishnan JA, Dransfield MT, Curtis JL, Ballman KV, Martinez FJ, Nakahira K, Cloonan SM, Choi ME, Choi AMK, ­SPIROMICS. Association of circulating cell-free mitochondrial DNA to outcomes in COPD in the SPIROMICS cohort. Mechanistic studies in COPD. American Thoracic Society International Conference Abstracts. 2019;С63;A7427. doi: 10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A7427.
  58. Ellinger J, Müller SC, Wernert N. Mitochondrial DNA in serum of patients with prostate cancer: a predictor of bio-chemical recurrence after prostatectomy. BJU Int. 2008;102:628–632. doi: 10.1111/j.1464-410X.2008.07613.x.
  59. Telysheva EN. Cell-free circula­ting DNA in plasma. Possibility of application in oncology. Vestnik Rossiyskogo nauchnogo tsentra rentgenoradiologii. 2017;17(2):2. (In Russ.)
  60. Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, Al-Ahmadie HA, Lee W, Seshan VE, Hakimi AA, Sander C. Mitochondrial DNA copy number variation across human cancers. Elife. 2016;5:e10769. doi: 10.7554/eLife.10769.
  61. Sandquist M, Wong HR. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Expert Rev Clin Immunol. 2014;10(10):1349–1356. doi: 10.1586/1744666X.2014.949675.
  62. Faust HE, Reilly JP, Anderson BJ, Ittner CAG, Forker CM, Zhang P, Weaver BA, Holena DN, Lanken PN, Christie JD, Meyer NJ, Mangalmurti NS, Shashaty MGS. Plasma mitochondrial DNA levels are associated with ARDS in trauma and sepsis patients. Chest. 2020;157(1):67–76. doi: 10.1016/j.chest.2019.09.028.
  63. Maximov VN, Malyutina SK, Orlov PS, Ivanoschuk DE, Mikhailova SV, Shapkina MYu, Hubacek J, Holmes M, Bobak M, Voevoda MI. Mitochondrial DNA copy number of leucocytes as aging marker and risk factors for age-related diseases in human. Advances in gerontology. 2019;32(3):422–430. (In Russ.)
  64. Voropaev EV, Zyatkov AA, Osipkina OV, Baranov OYu, Galinovskaya NV, Dotsenko VN. The method of molecular and genetic diagnosis of the process of cell senescence based on quantitative analysis of nuclear and mitochondrial DNA genes. Health and ecology issues. 2016;(1):46–50. (In Russ.)
  65. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–957. doi: 10.1172/JCI64125.
  66. Sudakov NP, Popkova TP, Katyshev AI, Goldberg OA, Novikova MA, Ezhikeeva SD, Ten MN, Nikiforov SB, Pushkarev BG, Klimenkov IV, Lepekhova SA, Konstantinov YuM. ­Level of free mtdna circulating in blood under dislipoproteinaemia and adrenaline myocarditis (experimental study). Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya “Biologiya. Ekologiya”. 2011;(4):136–142. (In Russ.)
  67. Sudakov NP, Apartsin KA, Lepekhova SA, Nikifo­rov SB, Katyshev AI, Lifshits GI, Vybivantseva AV, Konstantinov YM. The level of free circulating mitochondrial DNA in blood as predictor of death in case of acute coronary syndrome. Eur J Med Res. 2017;22(1):1. doi: 10.1186/s40001-016-0241-x.
  68. Ashar FN, Zhang Y, Longchamps RJ, Lane J, Moes A, Grove ML, Mychaleckyj JC, Taylor KD, Coresh J, Rotter JI, Boerwinkle E, Pankratz N, Guallar E, Arking DE. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017;2(11):1247–1255. doi: 10.1001/jamacardio.2017.3683.
  69. Sudakov NP, Popkova TP, Novikova MA, Katyshev AI, Nikiforov SB, Pushkarev BG, Goldberg OA, Klimenkov IV, Lepekhova SA, Apartsin KA, Ezhikeeva SD, Ten MN, Konstantinov YM. Interrelation between the level of free circulating mtDNA of blood with the activity of cytolysis markers in the expe­rimental acute small-focal myocardial ischemia. Sibirskiy meditsinskiy zhurnal (Irkutsk). 2013;(5):83–86. (In Russ.)
  70. Deng X, Yang G, Zheng X, Yang Y, Qin H, Liu ZX, Deng H, Liu SM. Plasma mtDNA copy numbers are associated with GSTK1 expression and inflammation in type 2 dia­betes. Diabet Med. 2020;37(11):1874–1878. doi: 10.1111/dme.14132.
  71. Cho SB, Koh I, Nam HY, Jeon JP, Lee HK, Han BG. Mitochondrial DNA copy number augments performance of A1C and oral glucose tolerance testing in the prediction of type 2 diabetes. Sci Rep. 2017;7(1):1–8. doi: 10.1038/srep43203.
  72. Maksimov VN, Gurazheva AA, Orlov PS, Malyutina SK, Ivanova AA, Maksimova SV, Rodina IA, Khamovich OV, Novosyolov VP. Comparative analysis of mitochondrial DNA copy numbers in myocardial tissue in sudden cardiac and non-cardiac death. Ateroskleroz. 2019;15(3):36–41. (In Russ.) doi: 10.15372/ATER20190302.
  73. Ponasenko AV, Tsepokina AV, Tkhorenko BA, Golubenko MV, Gubieva EK, Trephilova LP. Varia­bility of mitochondrial dna in the development of athe­rosclerosis and myocardial infarction (a review). Complex issues of cardiovascular diseases. 2018;7(4S):75–85. (In Russ.) doi: 10.1702/2306-1278-2018-7-4S-75-85.
  74. Vasyuk YuA, Kulikov KG, Kudryakov ON, Krikunova OV, Sadulaeva IA. Secondary mitochondrial dysfunction in acute coronary syndrome. Rational pharmacotherapy in cardiology. 2007;3(1):41–47. (In Russ.)
  75. Zhang Q, Raoof M, Chen Y. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–107.
  76. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol. 2004;75(6):99–1000. doi: 10.1189/jlb.070332.
  77. Kolmychkova KI, Zhelankin AV, Karagodin VP, Orekhov AN. Mitochondria and inflammation. Patologicheskaya fiziologiya i eksperimentalnaya tera­piya. 2016;60(4):114–121. (In Russ.)
  78. Maksimov VN, Gurazheva AA, Maksimova YuV. Number of copies of mitochondrial DNA of leukocytes as a marker of predisposition to coronary heart disease and sudden cardiac death. Ateroskleroz. 2018;14(3):64–69. (In Russ.) doi: 10.15372/ATER20180310.
  79. Randzh MS, Ballindzher SV, Van KhB. Povrezhdeniya mitokhondrial'noy DNK kak prognosticheskiy priznak ateroskleroticheskoy ishemicheskoy bolezni serdtsa. (Mitochondrial DNA damage as a prognostic sign of atherosclerotic coronary heart di­sease.) Patent for invention RF No. 2243558. Byull. No. 36 at 27.12.2004. (In Russ.)
  80. Hu H, Lin Y, Xu X, Lin S, Chen X, Wang S. The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol. 2020;114:104412. doi: 10.1016/j.yexmp.2020.104412.
  81. Pohjoismäki JL, Goffart S. The role of mitochondria in cardiac development and protection. Free ­Radic Biol Med. 2017;106:345–354. doi: 10.1016/j.freeradbiomed.2017.02.032.
  82. Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S. Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol. 2017;982:277–306. doi: 10.1007/978-3-319-55330-6_15.
  83. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50(2):121–127. doi: 10.1080/07853890.2017.1417631.
  84. Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev. 2021;41(1):275–313. doi: 10.1002/med.21732.
  85. Hernandez-Resendiz S, Buelna-Chontal M, Correa F. Targeting mitochondria for cardiac protection. Curr Drag Targets. 2014;14(5):586–600. doi: 10.2174/1389450111314050008.
  86. Schaper J, Meiser E, Stammler G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res. 1985;56(3):377–391. doi: 10.1161/01. RES.56.3.377.
  87. Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev. 2021;66:101250. doi: 10.1016/j.arr.2020.101250.
  88. Peng W, Cai G, Xia Y, Chen J, Wu P, Wang Z, Li G, Wei D. Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol. 2019;38(7):597–606. doi: 10.1089/dna.2018.4552.
  89. Zhang Y, Guallar E, Ashar FN, Longchamps RJ, Castellani CA, Lane J, Grove ML, Coresh J, Sotoodehnia N, Ilkhanoff L, Boerwinkle E, Pankratz N, Arking DE. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur Heart J. 2017;38(46):3443–3448. doi: 10.1093/eurheartj/ehx354.
  90. Vecoli C, Borghini A, Pulignani S, Mercuri A, Turchi S, Carpeggiani C, Picano E, Andreassi MG. Prognostic value of mitochondrial DNA4977 deletion and mitochondrial DNA copy number in patients with stable coronary artery disease. Atherosclerosis. 2018;276:91–97. doi: 10.1016/j.atherosclerosis.2018.07.015.
  91. Zhao D, Bartz TM, Sotoodehnia N, Post WS, Heckbert SR, Alonso A, Longchamps RJ, Castellani CA, Hong YS, Rotter JI, Lin HJ, O'Rourke B, Pankratz N, Lane JA, Yang SY, Guallar E, Arking DE. Mitochondrial DNA copy number and incident atrial fibrillation. BMC Med. 2020;18(1):246. doi: 10.1186/s12916-020-01715-6.
  92. Tsyplenkova VG, Sutyagin PV, Suslov VB, Oettinger AP. Cardiomyocyte mitochondria characteristics in different heart diseases and in experiments. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy. 2014;(8-2):53–56. (In Russ.)
  93. Panov AV, Dikalov SI, Darenskaya MA, Rychkova LV, Kolesnikova LI, Kolesnikov SI. Mitochondria: Aging, me­tabolic syndrome and cardiovascular diseases. formation of a new paradigm. Acta Biomedica Scientifica. 2020;5(4):33–44. (In Russ.) doi: 10.29413/ABS.2020-5.4.5.
  94. Shemiakova T, Ivanova E, Grechko AV, Gerasimova EV, Sobenin IA, Orekhov AN. Mitochondrial dysfunction and DNA damage in the context of pathogenesis of athe­rosclerosis. Biomedicines. 2020;8(6):166. doi: 10.3390/biomedicines8060166.
  95. Kiyuna LA, Albuquerque R, Chen CH, Mochly-Rosen D, Ferreira J. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radical Biology and Medicine. 2018;129:155–168. doi: 10.1016/j.freeradbiomed.2018.09.019.
  96. Zakharov-Gezekhus IA. Cytoplasmic heredity. Vavilov journal of genetics and breeding. 2014;18(1):93–102. (In Russ.)
  97. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circulation Research. 2007;100:460–473. doi: 10.1161/01.RES.0000258450.44413.96.
  98. Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta. Clin Dev Immunol. 2012;2012:832464. doi: 10.1155/2012/832464.
  99. Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Changes of mitochondria in athe­rosclerosis: possible determinant in the pathogenesis of the disease. Atherosclerosis. 2013;227(2):283–288. doi: 10.1016/j.atherosclerosis.2013.01.006.
  100. Sazonova MA, Sinyov VV, Barinova VA, Ryzh­kova AI, Zhelankin AV, Postnov AY, Sobenin IA, Bobryshev YV, Orekhov AN. Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta. Biomed Res Int. 2015;2015:825468. doi: 10.1155/2015/825468.
  101. Smirnova LA, Khasanova ZB, Ezhov MV, Polevaya TYu, Matchin YuG, Balakhonova TV, Sobenin IA, Postnov AYu. Association of mutations in the mitochondrial genome with coronary and carotid atherosclerotic lesions. Klinitsist. 2014;8(1):34–41. (In Russ.) doi: 10.17650/1818-8338-2014-1-34-41.25.
  102. Sazonova MA, Sinyov VV, Ryzhkova AI, Galitsyna EV, Khasanova ZB, Postnov AY, Yarygina EI, Orekhov AN, Sobenin IA. Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis. Oxid Med Cell Longev. 2017;2017:6934394. doi: 10.1155/2017/6934394.
  103. Orekhov AN, Poznyak AV, Sobenin IA, Nikifirov NN, Ivanova EA. Mitochondrion as a selective target for the treatment of atherosclerosis: Role of mitochondrial DNA mutations and defective mitophagy in the pathogenesis of atherosclerosis and chronic inflammation. Curr Neuropharmacol. 2020;18(11):1064–1075. doi: 10.2174/1570159X17666191118125018.
  104. Mercer JR, Cheng KK, Figg N. DNA damage links mitochondrial dysfunction to athero sclerosis and metabolic syndrome. Circ Res. 2010;107(8):1021–1031. doi: 10.1161/CIRCRESAHA.110.218966.
  105. Salahov RR, Golubenko MV, Markov AV, Slepcov AA, Nazarenko MS. Issledovanie chisla kopiy mtDNK na kletku pri ateroskleroze. In: Aktual'nye voprosy fundamental'noy i klinicheskoy meditsiny. Sbornik materialov kongressa molodyh uchyonyh. Tomsk; 2018. р. 126–128. (In Russ.)
  106. Botto N, Berti S, Manfredi S, Al-Jabri A, Federici C, Clerico A, Ciofini E, Biagini A, Grazia Andreassi M. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res. 2005;570(1):81–88. doi: 10.1016/j.mrfmmm.2004.10.003.
  107. Liu L-P, Cheng K, Ning M-A. Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease. Atherosclerosis. 2017;261:105–110. doi: 10.1016/j.atherosclerosis.2017.02.013.
  108. Frahm Т, Mohamed SA, Bruse P. Lack of age-rela­ted increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev. 2005;126:1192–1200. doi: 10.1016/j.mad.2005.06.008.
  109. Qin C, Gu J, Liu R, Xu F, Qian H, He Q, Meng W. Release of mitochondrial DNA correlates with peak inflammatory cytokines in patients with acute myocardial infarction. Anatol J Cardiol. 2017;17(3):224–228. doi: 10.14744/AnatolJCardiol.2016.7209.
  110. Kung CT, Hsiao SY, Tsai TC, Su CM, Chang WN, Huang CR, Wang HC, Lin WC, Chang HW, Lin YJ, Cheng BC, Su BY, Tsai NW, Lu CH. Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J Transl Med. 2012;10:130. doi: 10.1186/1479-5876-10-130.
  111. West AP. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology. 2017;391:54–63. doi: 10.1016/j.tox.2017.07.016.
  112. Mariero LH, Torp MK, Heiestad CM, Baysa A, Li Y, Valen G, Vaage J, Stensløkken KO. Inhibiting nucleo­lin reduces inflammation induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and reoxygenation. Br J Pharmacol. 2019;176(22):4360–4372. doi: 10.1111/bph.14830.
  113. Liksøen M, Mariero LH, Torp MK, Baysa A, Ytrehus K, Haugen F, Seljeflot I, Vaage J, Valen G, Stensløkken KO. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016;111(4):42. doi: 10.1007/s00395-016-0553-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2022 Eco-Vector





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».