Toxic desomorphine encephalopathy due to the use of “Krokodil”: clinical and neuroimaging features
- Authors: Nartov S.E.1, Parkhomenko E.V.2, Ekusheva E.V.3,4, Karpov D.Y.5
-
Affiliations:
- Karpov’s Neuroclinic Co.
- Altai State Medical University
- Academy of Postgraduate Education “Federal Research and Clinical Center for Specialized Medical Care Types and Medical Technologies, Federal Biomedical Agency of Russia”
- Belgorod State National Research University
- Regional state budget health institution City Hospital No. 5
- Issue: Vol 13, No 1 (2022)
- Pages: 30-41
- Section: Original Study Articles
- URL: https://bakhtiniada.ru/clinpractice/article/view/96475
- DOI: https://doi.org/10.17816/clinpract96475
- ID: 96475
Cite item
Full Text
Abstract
Background: Toxic desomorphine encephalopathy (TDE) is a pathological condition that develops as a result of the intravenous use of a drug called “Krokodil” containing desomorphine, made in the artisanal conditions using codeine-containing drugs, organic solvents (gasoline), iodine and red phosphorus. This disease is more often observed in the CIS countries. In addition to the acute and chronic pathological conditions with the damage to various organs, the use of “Krokodil” is characterized by pronounced extrapyramidal manifestations in the form of dystonia, parkinsonism, postural disorders, as well as the occurrence of cognitive and affective disorders.
Aims: To find the clinical and neuroimaging features of toxic desomorphine encephalopathy, as well as possible methods of its treatment.
Methods: A clinical analysis of the medical documentation of 21 TDE patients (11 women and 10 men) with a history of the use of “Krokodil” was carried out, the patients had been under observation from 2014 to 2021. All the patients underwent a clinical physical and neurological examination, 14 of them underwent neuroimaging (brain MRI and/or MSCT). The observation of these patients revealed a number of characteristic clinical and neuroimaging features inherent in the majority of drug addicts.
Results: The clinical picture of patients with TDE was dominated by movement disorders. All the patients had pronounced postural disorders and gait disturbance. Parkinsonism was observed in 20 of 21 patients. The hyperkinetic syndrome was presented in 17 patients (80.9%) and was manifested by dystonia of various localization with polymorphic manifestations. The brain MRI data taken from the «Krokodil» users for 3 years were characterized by symmetrical focal changes in the basal ganglia, brainstem, cerebellum and internal capsule of the thalamus in the form of an increase in the intensity of the MR signal in the T1 mode and attenuation in the T2-weighted images mode (7 of 11 cases), with the subsequent regression of these characteristics based on the results of the subsequent MRI studies.
Conclusion: The study results have revealed the clinical manifestations characteristic of TDE — polymorphic extrapyramidal disorders, as well as neuroimaging changes reflecting these data.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey E. Nartov
Karpov’s Neuroclinic Co.
Author for correspondence.
Email: nartowv@mail.ru
ORCID iD: 0000-0002-2070-609X
SPIN-code: 9018-1882
MD, neurologist
Russian Federation, 116A, Sotsialisticheskiy pr-t, Altai Region, Barnaul, 656031Ekaterina V. Parkhomenko
Altai State Medical University
Email: parekva@mail.ru
ORCID iD: 0000-0003-0489-9845
SPIN-code: 5333-6031
MD, PhD, Аssociate Professor
Russian Federation, BarnaulEvgenia V. Ekusheva
Academy of Postgraduate Education “Federal Research and Clinical Center for Specialized Medical Care Types and Medical Technologies, Federal Biomedical Agency of Russia”; Belgorod State National Research University
Email: ekushevaev@mail.ru
ORCID iD: 0000-0002-3638-6094
SPIN-code: 8828-0015
MD, PhD, Professor
Russian Federation, Moscow; BelgorodDenis Yu. Karpov
Regional state budget health institution City Hospital No. 5
Email: dr_karpov@list.ru
MD, PhD, neurologist
Russian Federation, 75, Zmeinogorsky tract, Barnaul, Altai Krai, 656045References
- World Drug Report 2018 United Nations publication, Sales No. E.18.XI.9. Available from: https://www.unodc.org/wdr2018/
- Grund JC, Latypov A, Harris M. Breaking worse: the emergence of Krokodil and excessive injuries among people who inject drugs in Eurasia. Int J Drug Policy. 2013;24(4):265–74. doi: 10.1016/j.drugpo.2013.04.007
- Gilbert L, Primbetova S, Nikitin D, et al. Redressing the epidemics of opioid overdose and HIV among people who inject drugs in Central Asia: the need for a syndemic approach. Drug Alcohol Depend. 2013;132(01):S56–S60. doi: 10.1016/j.drugalcdep.2013.07.017
- Booth RE. “Krokodil” and other home-produced drugs for injection: a perspective from Ukraine. Int J Drug Policy. 2013; 24(4):277–278. doi: 10.1016/j.drugpo.2013.05.009
- Otiashvili D, Tabatadze M, Balanchivadze N, Kirtadze I. Policing, massive street drug testing and poly-substance use chaos in Georgia — a policy case study. Substance Abuse Treatment, Prevention, and Policy. 2016;11:4. doi: 10.1186/s13011-016-0049-2
- Hearne E, Grund JC, van Hout MC, McVeigh J. A scoping review of home-produced heroin and amphetamine-type stimulant substitutes: implications for prevention, treatment, and policy. Harm Reduct J. 2016;13:14. doi: 10.1186/s12954-016-0105-2
- Thekkemuriyi DV, John SG, Pillai U. “Krokodil” — a designer drug from across the Atlantic, with serious consequences. Am J Med. 2014;127(3):e1–2. doi: 10.1016/j.amjmed.2013.09.030
- Катаев C.C., Зеленина Н.Б., Шилова Е.А. Определение дезоморфина в моче // Проблемы экспертизы в медицине. 2007. Т. 7, № 1. С. 32–36. [Kataev SS, Zelenina NB, Shilova EA. Determination of desomorphine in urine. Problems of Expertise in Medicine. 2007;7(1):32–36. (In Russ).]
- Eddy NB. Synthetic substances with morphinelike effect: clinical experience; potency, sideeffects, addiction liability. Bull World Health Organ. 1957;17(45):569–863.
- Nordal A. Natural and synthetic drugs with morphine-like effects considered from a pharmacognostic point of view. Bulletin on Narcotics. 1956;VIII(1):18–27.
- Neves JF, Alves EA, Soares JX, et al. Data analysis of “Krokodil” samples obtained by street-like synthesis Data Brief. 2016;6:83–88. doi: 10.1016/j.dib.2015.11.046
- Zheluk A, Quinn C, Meylakhs P. Internet search and Krokodil in the Russian Federation: an infoveillance study. J Med Internet Res. 2014;16(9):e212. doi: 10.2196/jmir.3203
- Alves EA, Soares JX, Afonso CM, et al. The harmful chemistry behind “krokodil”: street-like synthesis and product analysis. Forensic Sci Int. 2015;257:76–82. doi: 10.1016/j.forsciint.2015.07.042
- Alves EA, Grund JC, Afonso CM, et al. The harmful chemistry behind Krokodil (desomorphine) synthesis and mechanisms of toxicity. Forensic Science Int. 2015;249:207–213. doi: 10.1016/j.forsciint.2015.02.001
- Gahr M, Freudenmann RW, Hiemke C, et al. Desomorphine goes “crocodile”. J Addict Dis. 2012;(31):407–412.
- Thekkemuriyi DV, John SG, Pillai U. “Krokodil” — a designer drug from across the Atlantic, with serious consequences. Am J Med. 2014;127:e1–e2.
- Azbel L, Dvoryak S, Altice FL. “Krokodil” and what a long strange trip it’s been. Int J Drug Policy. 2013;24:279–280.
- Alves EA, Brandro P, Neves JF, et al. Repeated subcutaneous administrations of krokodil causes skin necrosis and internal organs toxicity in Wistar rats: putative human implications. Hum Psychopharmacol Clin Exp. 2017;32:e2572. doi: 10.1002/hup.2572
- Мухамедзянова Р.И., Белопасов В.В., Куликов И.А., Корецкая Л.Р. Неврологические проявления дезоморфиновой наркомании // Неврология и нейрохирургия Восточной Европы. 2012. № 4. С. 13–20. [Mukhametzyanova RI, Belopasov VV, Kulikov IA, Koretskaya LR. Neurological manifestations of deomorphine addiction. Neurology and Neurosurgery of Eastern Europe. 2012;(4):13–20. (In Russ).]
- Abbruscato TJ, Trippier PC. DARK classics in chemical neuroscience: methamphetamine. ACS Chem Neurosci. 2018;9(10): 2373–2378. doi: 10.1021/acschemneuro.8b00123
- Methamphetamine — Department of Electrical Engineering. Pharmacology. Р. 1–19. Available from: https://studyres.com/doc/7831317/methamphetamine---department-of-electrical-engineering?__cf_chl_managed_tk__=pmd_6506df0f08f37db11198c6ebd525ca06f45a6434-1628698283-0-gqNtZGzNAw2jcnBszRE6#
- Левин О.С. Эфедроновая энцефалопатия // Журнал неврологии и психиатрии им. C.C. Корсакова. 2005. Т. 105, № 7. С. 12–20. [Levin OS. Ephedron encephalopathy. Journal of Neurology and Psychiatry named after C.C. Korsakov. 2005;105(7):12–20. (In Russ).]
- Левин О.С., Датиева В.К. Применение биперидена (акинетона) у больных эфедроновой энцефалопатией // Журнал неврологии и психиатрии им. C.C. Корсакова. 2013. Т. 113, № 8. С. 33–37. [Levin OS, Datieva VK. The use of biperiden (akineton) in patients with ephedron encephalopathy. Journal of Neurology and Psychiatry named after C.C. Korsakov. 2013;113(8): 33–37. (In Russ).]
- Wright CI, Sabine JC. The inactivation of cholinesterase by morphine, dilaudid, codeine and desomorphine. J Pharm Exp Ther. 1943;78:375–385.
- Hsieh BH, Deng JF, Ger J, Tsai WJ. Acetylcholinesterase inhibition and the extrapyramidal syndrome: a review of the neurotoxicity of organophosphate. NeuroToxicology. 2001;22: 423–427. doi: 10.1016/s0161-813x(01)00044-4
- Panda AK, Kiran BK, Lomesh BL. Extrapyramidal syndrome. BMJ Case Rep. 2014;2014:bcr2013009752. doi: 10.1136/bcr-2013-009752
- Kim J, Ham S, Hong H, et al. Brain reward circuits in morphine addiction. Mol Cells. 2016;39(9):645–653. doi: 10.14348/molcells.2016.0137
- Colleen A. McClung. The molecular mechanisms of morphine addiction. Rev Neurosci. 2006;17:393–402.
- Goel D, Singhal A, Srivastav KR, et al. Magnetic resonance imaging changes in a case after acute organophosphate poisoning. Neurol India. 2006;54:207–209.
Supplementary files
