胃和胰腺神经内分泌肿瘤:放射组学的诊断能力、问题及其解决方法
- 作者: Nudnov N.V.1,2,3, Shakhvalieva E.S.4, Karelidze D.G.4, Borisov A.A.4, Ivannikov M.E.4
-
隶属关系:
- Russian Research Center of Roentgenology and Radiology, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education
- RUDN University
- Russian Research Center of Roentgenology and Radiology
- 期: 卷 5, 编号 4 (2024)
- 页面: 712-724
- 栏目: 原创性科研成果
- URL: https://bakhtiniada.ru/DD/article/view/309831
- DOI: https://doi.org/10.17816/DD629345
- ID: 309831
如何引用文章
详细
论证。目前,放射组学是诊断和治疗各种局部化神经内分泌肿瘤的一种前景广阔的工具。这种方法常用于胃肠道神经内分泌肿瘤与该部位的其他肿瘤的鉴别诊断。
目的 — 评估放射组学在胃和胰腺神经内分泌肿瘤鉴别诊断中的应用可能性。
材料和方法。研究中,包括12名经形态学验证的胃肿瘤患者(6名神经内分泌肿瘤患者和6名腺癌患者)的数据和 22名经形态学验证的胰腺肿瘤患者(11名神经内分泌肿瘤患者和11名腺癌患者)的数据。所有患者在治疗前都在俄罗斯放射学科学中心接受了静脉注射造影剂的腹腔器官计算机断层扫描(CT)检查。计算了胃和胰腺肿瘤区域的放射组学指数,该区域在CT检查的原生相进行了手动分割。使用Microsoft Office Excel和R — R-Studio编程语言的免费开源软件开发环境进行结果处理和统计分析。
结果。通过CT研究实例,展示了胃和胰腺神经内分泌肿瘤的典型和非典型视觉征象、肿瘤的对比度、定位和结构的特征。研究发现,胃神经内分泌瘤和胃腺癌的15项放射组学指标在统计学上存在显著差异。就胰腺而言,神经内分泌肿瘤与腺癌在14项放射组学指标上有明显统计学差异。
结论。胃和胰腺的神经内分泌肿瘤是一种罕见的肿瘤,在大多数情况下临床上并无症状,且由于其体积小、对比度特征而难以成像。纹理分析可能是鉴别胃肠道神经内分泌肿瘤与该部位其他肿瘤的一种很有前途的方法,特别是考虑到活检取样的复杂性。
作者简介
Nikolay V. Nudnov
Russian Research Center of Roentgenology and Radiology, Moscow, Russia; Russian Medical Academy of Continuing Professional Education; RUDN University
编辑信件的主要联系方式.
Email: nudnov@rncrr.ru
ORCID iD: 0000-0001-5994-0468
SPIN 代码: 3018-2527
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow; Moscow; MoscowElina S-A. Shakhvalieva
Russian Research Center of Roentgenology and Radiology
Email: shelina9558@gmail.com
ORCID iD: 0009-0000-7535-8523
俄罗斯联邦, Moscow
David G. Karelidze
Russian Research Center of Roentgenology and Radiology
Email: david_ka@mail.ru
ORCID iD: 0009-0002-0375-1291
俄罗斯联邦, Moscow
Aleksandr A. Borisov
Russian Research Center of Roentgenology and Radiology
Email: aleksandrborisov10650@gmail.com
ORCID iD: 0000-0003-4036-5883
SPIN 代码: 4294-4736
俄罗斯联邦, Moscow
Mikhail E. Ivannikov
Russian Research Center of Roentgenology and Radiology
Email: ivannikovmichail@gmail.com
ORCID iD: 0009-0007-0407-0953
SPIN 代码: 3419-2977
俄罗斯联邦, Moscow
参考
- Shah MH, Goldner WS, Benson AB, et al. Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021;19(7):839–868. doi: 10.6004/jnccn.2021.0032
- Menshikov KV, Sultanbaev AV, Musin ShI, et al. Neuroendocrine Tumours: a Literature Review. Creative surgery and oncology. 2021;11(2):174–182. EDN: RTJQRK doi: 10.24060/2076-3093-2021-11-2-174-182
- Alekberzade AV, Krylov NN, Lipnitskiy EM, et al. Gastric neuroendocrine tumors. Pirogov Russian Journal of Surgery. 2019;(12):111–120. EDN: RIRQGH doi: 10.17116/hirurgia2019121111
- Ministry of Health of the Russian Federation. Clinical guidelines «Neuroendocrine tumors» [Internet]. 2020. Available from: https://cr.minzdrav.gov.ru/schema/610_1 (In Russ.) Accessed 2024 Mar 4.
- Dasari A, Shen C, Halperin D, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017;3(10):1335–1342. doi: 10.1001/jamaoncol.2017.0589
- Department of Health of the City of Moscow. Guidelines «Neuroendocrine tumors of the pancreas» [Internet]. 2019. Available from: https://niioz.ru/upload/iblock/4ee/4ee9895614aa276f538069caee698fce.pdf (In Russ.) Accessed 2024 Mar 4.
- Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;19(10):1727–1733. doi: 10.1093/annonc/mdn351
- Loosen SH, Kostev K, Jann H, et al. Distribution of gastrointestinal neuroendocrine tumors in Europe: results from a retrospective cross-sectional study. J Cancer Res Clin Oncol. 2023;149(4):1411–1416. doi: 10.1007/s00432-022-04003-3
- Chernousov AF, Egorov AV, Musaev GKh, et al. Neuroendocrine tumors of a pancreas: 30 year’s experience of clinic of faculty surgery of N.N. Burdenko. Pirogov Russian Journal of Surgery. 2013;(7):13–19. EDN: QYSJLV
- Dias AR, Azevedo BC, Alban LBV., et al. Gastric neuroendocrine tumor: review and update. Arq Bras Cir Dig. 2017;30(2):150–154. doi: 10.1590/0102-6720201700020016
- Sundin A, Vullierme MP, Kaltsas G, Plöckinger U. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations. Neuroendocrinology. 2009;90(2):167–183. doi: 10.1159/000184855
- Radiographia.info [Internet]. Pancreatic endocrine tumors. Available from: https://radiographia.info/article/endokrinnyeopuholipodzheludochnoyzhelezy (In Russ.) Accessed: 04.03.2024
- Gruzdev IS. Application of texture analysis for differential diagnosis and prognosis in the surgical treatment of hypervascular pancreatic masses [dissertation]. Moscow; 2022. Available from: https://www.rncrr.ru/nauka/dissertatsionnyysovet/obyavleniyaozashchitakh/upload%202023/Груздев_диссертация.pdf (In Russ.) EDN: BKPRVN
- Lewis RB, Lattin Jr GE, Paal E. Pancreatic endocrine tumors: radiologic clinicopathologic correlation. Radiographics. 2010;30(6):1445–1464. doi: 10.1148/rg.306105523
- Raman SP, Hruban RH, Cameron JL, et al. Pancreatic imaging mimics: part 2, pancreatic neuroendocrine tumors and their mimics. AJR Am J Roentgenol. 2012;199(2):309–318. doi: 10.2214/AJR.12.8627
- Sahani DV, Bonaffini PA, Fernández Del Castillo C, Blake MA. Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology. 2013;266(1):38–61. doi: 10.1148/radiol.12112512
- Ganeshan D, Bhosale P, Yang T, Kundra V. Imaging features of carcinoid tumors of the gastrointestinal tract. AJR Am J Roentgenol. 2013;201(4):773–786. doi: 10.2214/AJR.12.9758
- Mikhailov IV, Beliakouski VN, Kudrashou VA, et al. Biopsy of pancreatic tumors prior to resection: for and against. Health and Ecology Issues. 2021;18(1):62–69. EDN: ECTEZT doi: 10.51523/2708-6011.2021-18-1-9
- Staal FCR, Aalbersberg EA, van der Velden D, et al. GEP-NET radiomics: a systematic review and radiomics quality score assessment. Eur Radiol. 2022;32(10):7278–7294. doi: 10.1007/s00330-022-08996-w
- van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77(21):e104–e107. doi: 10.1158/0008-5472.CAN-17-0339
- Wang X, Qiu JJ, Tan CL, et al. Development and Validation of a Novel Radiomics-Based Nomogram With Machine Learning to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors. Front Oncol. 2022;12:843376. doi: 10.3389/fonc.2022.843376
- Dong Y, Yang DH, Tian XF, et al. Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images. Br J Radiol. 2023;96(1149):20220783. doi: 10.1259/bjr.20220783
- Ye JY, Fang P, Peng ZP, et al. A radiomics based interpretable model to predict the pathological grade of pancreatic neuroendocrine tumors. Eur Radiol. 2024;34(3):1994–2005. doi: 10.1007/s00330-023-10186-1
- Chiti G, Grazzini G, Cozzi D, et al. Imaging of Pancreatic Neuroendocrine Neoplasms. Int J Environ Res Public Health. 2021;18(17):8895. doi: 10.3390/ijerph18178895
- Liang W, Yang P, Huang R, et al. A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors. Clin Cancer Res. 2019;25(2):584–594. doi: 10.1158/1078-0432.CCR-18-1305
- Wang R, Liu H, Liang P, et al. Radiomics analysis of CT imaging for differentiating gastric neuroendocrine carcinomas from gastric adenocarcinomas. Eur J Radiol. 2021;138:109662. doi: 10.1016/j.ejrad.2021.109662
- Han X, Yang J, Luo J, et al. Application of CT-Based Radiomics in Discriminating Pancreatic Cystadenomas From Pancreatic Neuroendocrine Tumors Using Machine Learning Methods. Front Oncol. 2021;11:606677. doi: 10.3389/fonc.2021.606677
- Shi YJ, Zhu HT, Liu YL, et al. Radiomics Analysis Based on Diffusion Kurtosis Imaging and T2 Weighted Imaging for Differentiation of Pancreatic Neuroendocrine Tumors From Solid Pseudopapillary Tumors. Front Oncol. 2020;10:1624. doi: 10.3389/fonc.2020.01624
- Li X, Zhu H, Qian X, et al. MRI Texture Analysis for Differentiating Nonfunctional Pancreatic Neuroendocrine Neoplasms From Solid Pseudopapillary Neoplasms of the Pancreas. Acad Radiol. 2020;27(6):815–823. doi: 10.1016/j.acra.2019.07.012
- He M, Liu Z, Lin Y, et al. Differentiation of atypical non functional pancreatic neuroendocrine tumor and pancreatic ductal adenocarcinoma using CT based radiomics. Eur J Radiol. 2019;117:102–111. doi: 10.1016/j.ejrad.2019.05.024
- An P, Zhang J, Li M, et al. Clinical Data CT Radiomics Based Model for Predicting Prognosis of Patients with Gastrointestinal Pancreatic Neuroendocrine Neoplasms (GP-NENs). Comput Math Methods Med. 2022;2022:4186305. doi: 10.1155/2022/4186305
- Song C, Wang M, Luo Y, et al. Predicting the recurrence risk of pancreatic neuroendocrine neoplasms after radical resection using deep learning radiomics with preoperative computed tomography images. Ann Transl Med. 2021;9(10):833. doi: 10.21037/atm-21-25
- Caruso D, Polici M, Rinzivillo M, et al. CT-based radiomics for prediction of therapeutic response to Everolimus in metastatic neuroendocrine tumors. Radiol Med. 2022;127(7):691–701. doi: 10.1007/s11547-022-01506-4
补充文件
