Possibilities and limitations of using machine text-processing tools in Russian radiology reports

Cover Image

Cite item

Abstract

BACKGROUND: In radiology, important information can be found not only in medical images, but also in the accompanying text descriptions created by radiologists. Identification of study protocols containing certain data and extraction of these data can be useful primarily for clinical problems; however, given the large amount of such data, the development of machine analysis algorithms is necessary.

AIM: To estimate the possibilities and limitations of using a tool for machine processing of radiology reports to search for pathological findings.

MATERIALS AND METHODS: To create an algorithm for automatic analysis of radiology reports, use cases were selected that participated in the experiment on the use of innovative technologies in the computer vision for the analysis of medical images in 2020. Mammography, chest X-ray, chest computed tomography (CT), and LDCT, were among the use cases performed in Moscow. A dictionary of keywords has been compiled. After the automatic marking of the reports by the developed tool, the results were assessed by a radiologist. The number of protocols analyzed by the radiologist for training and validation of the algorithms was 977 for mammography, 4,804 for all chest X-ray scans, 4,074 for chest CT, and 398 for chest LDCT. For the final testing of the developed algorithms, test datasets of 1,032 studies for mammography, 544 for chest X-ray, 5,000 for CT of the chest, and 1,082 studies for the LDCT of the chest were additionally labeled.

RESULTS: The best results were achieved in the search for viral pneumonia in chest CT reports (accuracy 0.996, sensitivity 0.998, and specificity 0.989) and breast cancer in mammography reports (accuracy 1.0, sensitivity 1.0, and specificity 1.0). When searching for signs of lung cancer by the algorithm, the metrics were as follows: accuracy 0.895, sensitivity 0.829, and specificity 0.936, when searching for pathological changes in the chest organs in radiography and fluorography protocols (accuracy 0.912, sensitivity 1.000, and specificity 0.844).

CONCLUSIONS: Machine methods with high accuracy can be used to automatically classify the radiology reports of mammography and chest CT with viral pneumonia. The achieved accuracy is sufficient for successful application to automatically compare the conclusions of physicians and artificial intelligence models when searching for signs of lung cancer in chest CT and LDCT, pathological findings in chest X-ray.

About the authors

Daria Yu. Kokina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: d.kokina@npcmr.ru
ORCID iD: 0000-0002-1141-8395
SPIN-code: 9883-4656
Russian Federation, Moscow

Victor A. Gombolevskiy

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: g_victor@mail.ru
ORCID iD: 0000-0003-1816-1315
SPIN-code: 6810-3279

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Kirill M. Arzamasov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: k.arzamasov@npcmr.ru
ORCID iD: 0000-0001-7786-0349
SPIN-code: 3160-8062

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Anna E. Andreychenko

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: a.andreychenko@npcmr.ru
ORCID iD: 0000-0001-6359-0763
SPIN-code: 6625-4186

Cand. Sci. (Phys.-Math.)

Russian Federation, Moscow

Sergey P. Morozov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Author for correspondence.
Email: spmoroz@gmail.com
ORCID iD: 0000-0001-6545-6170
SPIN-code: 8542-1720

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Sorin V, Barash Y, Konen E, Klang E. Deep learning for natural language processing in radiology: Fundamentals and a systematic review. J Am Coll Radiol. 2020;17(5):639–648. doi: 10.1016/j.jacr.2019.12.026
  2. Monshi MM, Poon J, Chung V. Deep learning in generating radiology reports: A survey. Artif Intell Med. 2020;(106):101878. doi: 10.1016/j.artmed.2020.101878
  3. Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report annotation using intelligent word embeddings: Applied to multi-institutional chest CT cohort. J Biomed Inform. 2018;(77):11–20. doi: 10.1016/j.jbi.2017.11.012
  4. Kivotova E, Maksudov B, Kulee R, Ibragimov B. Extracting clinical information from chest X-ray reports: A case study for Russian language. Conference: International Conference Nonlinearity, Information and Robotics (NIR)At: Innopolis, Russia; 2020. Р. 1–6. doi: 10.1109/NIR50484.2020.9290235
  5. Lee C, Kim Y, Kim YS, Jang J. Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. Am J Roentgenol. 2019;212(4):734–740. doi: 10.2214/AJR.18.19869
  6. Yuan J, Zhu H, Tahmasebi A. Classification of pulmonary nodular findings based on characterization of change using radiology reports. AMIA Jt Summits Transl Sci Proc. 2019;2019:285–294.
  7. Morozov SP, Protsenko DN, Smetanina SV, et al. Radiation diagnostics of coronavirus disease (COVID-19): Organization, methodology, interpretation of results: Preprint, 2020-II. Version 2. Moscow; 2020. 78 р. (In Russ).
  8. The prevention, diagnosis and treatment of the new coronavirus infection 2019-nCoV. Temporary guidelines Ministry of Health of the Russian Federation. Pulmonologiya. 2019;29(6):655–672. (In Russ). doi: 10.18093/0869-0189-2019-29-6-655-672
  9. D’Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. Reston, VA, American College of Radiology; 2013.
  10. Caliskan D, Zierk J, Kraska D, et al. First steps to evaluate an NLP tool’s medication extraction accuracy from discharge letters. Stud Health Technol Inform. 2021;(278):224–230. doi: 10.3233/SHTI210073
  11. American College of Radiology Committee on Lung-RADS. Lung-RADS Assessment Categories version 1.1. Available from: https:// www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRADSAssessmentCategoriesv1-1.pdf. Accessed: 01.01.2020.
  12. Morozov SP, Vladzimirskiy AV, Gombolevskiy VA, et al. Artificial intelligence: natural language processing for peer-review in radiology. J Radiol Nuclear Med. 2018;99(5):253–258. (In Russ). doi: 10.20862/0042-4676-2018-99-5-253-258
  13. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722. doi: 10.1148/radiol.2462070712
  14. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the fleischner society 2017. Radiology. 2017;284(1):228–243. doi: 10.1148/radiol.2017161659
  15. Callister ME, Baldwin DR, Akram AR, et al.; British Thoracic Society Pulmonary Nodule Guideline Development Group; British Thoracic Society Standards of Care Committee. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax. 2015;70(Suppl 2):ii1–ii54. doi: 10.1136/thoraxjnl-2015-207168
  16. Sinitsyn VE, Komarova MA, Mershina EA. Radiology report: past, present and future. J radiol nuclear med. 2014;(3):35–40. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».