Vol 204 (2022)

Cover Page

Full Issue

Статьи

Method of similar operators in the problem of bi-invariant subspaces

Baskakov A.G., Garkavenko G.V., Krishtal I.A., Uskova N.B.

Abstract

In this paper, we discuss the construction of bi-invariant subspaces for a self-adjoint, linear, closed operator with discrete spectrum perturbed by a bounded operator. The main result is the theorem on the similarity of this operator to a block diagonal operator. This theorem implies results concerning biinvariant subspaces and formulas for projectors and weighted average eigenvalues. In addition, we construct the corresponding group of operators and propose a new modification of the method of similar operators.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:3-15
pages 3-15 views

On one class of initial-boundary-value problems in aerohydroelasticity

Velmisov P.A., Tamarova Y.A., Pokladova Y.V.

Abstract

In this paper, we consider initial-boundary problems for systems of differential equations, which are mathematical models of the mechanical system “pipeline-pressure sensor” intended for controlling pressure in gas-liquid media. Based on the models proposed, we examine the joint dynamics of the sensitive element of the pressure sensor and the medium in the pipeline. To describe the dynamics of the medium and the dynamics of the sensitive element, we use linear models of fluid and gas mechanics and mechanics of solid deformable bodies. We obtain differential equations with deviating arguments that relate the displacement (deformation) of the sensitive element of the sensor with the pressure law of the medium in the engine. Also, we develop analytical and numerical methods for solving these initial-boundary problems.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:16-26
pages 16-26 views

Multipotent sets in homogeneous commutative monoids

Virchenko Y.P.

Abstract

In this paper, we introduce the concept of k-potent sets in monoids, k ∈ , establish their simplest properties, and indicate a class of homogeneous monoids with a set of generating elements. We find simple necessary conditions of the k-potency of a fixed set in such a monoid. For commutative monoids, we establish an isormorphism between them and the monoid +I with the corresponding label set I. For commutative homogeneous monoids with sets of generators, we prove necessary and sufficient conditions for the k-potency of their subsets. Finally, we apply this result to the binary Goldbach problem in analytic number theory.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:27-36
pages 27-36 views

Combinatorial algorithm for finding the number of paths on a directed graph

Erusalimskiy l.M., Cherdyntseva M.I.

Abstract

In this paper, we present an algorithm for finding the number of paths on a directed graph that start at an arbitrary subset of its vertices. The algorithm is based on the ideas underlying the construction of Pascal’s triangle. The complexity of the algorithm coincides with the complexity of the well-known Dijkstra algorithm for finding shortest paths on graphs. We also generalize the algorithm proposed to the problem on graphs with reachability constraints.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:37-43
pages 37-43 views

Methods for studying differential-difference equations with incommensurable shifts of arguments

Ivanova E.P.

Abstract

We consider elliptic boundary-value problems for differential-difference equations containing incommensurable shifts of arguments in leading terms. Using the reduction of the original problem to a certain nonlocal problem, we examine the solvability of boundary-value problems, the smoothness of solutions, and spectral properties.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:44-52
pages 44-52 views

Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on R2

Lyahov L.N., Inozemtsev A.I.

Abstract

In this paper, we propose a formula for representing the solution of a partial integral Fredholm equation of the second kind in the form of the corresponding Neumann series. We obtain conditions for the existence and uniqueness of this solution in the classes of Lebesgue functions Lp, p = (p1,p2), defined in a finite rectangle D = (a1,b1) х (a2,b2) of the Euclidean space 2.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:53-65
pages 53-65 views

On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations

Turtin D.V., Stepovich M.A., Kalmanovich V.V., Seregina Е.В.

Abstract

In this paper, we discuss the possibility of using the method of integral representations (the Hankel method) for solving the nonstationary problem of heat and mass transfer in a semiconductor target. Some features of this approach to problems of heat and mass transfer in homogeneous and multilayer media are studied. We consider the example of two-dimensional diffusion of minority charge carriers generated by an electron probe. We show that a number of practical problems for multilayer targets with different layer parameters can be solved by the approach developed earlier for problems of heat and mass transfer in homogeneous semiconductor targets.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:66-73
pages 66-73 views

On the averaging principle for semilinear fractional differential inclusions in a banach space with a deviating argument and a small parameter

Kamenskii M.I., Petrosyan G.G.

Abstract

The this paper, we considers the Cauchy problem for a class of semilinear differential inclusions in a separable Banach space involving a fractional Caputo derivative of order q ∈ (0,1), a small parameter, and a deviant argument. We assume that the linear part of the inclusion generates a Со-semigroup. In the space of continuous functions, we construct a multivalued integral operator whose fixed points are solutions. An analysis of the dependence of this operator on a parameter allows one to establish an analog of the averaging principle. We apply methods of the theory of fractional analysis and the theory of topological degree for condensing set-valued mappings.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:74-84
pages 74-84 views

Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane

Kyrov V.A.

Abstract

In this paper, we examine the problem of finding all locally doubly transitive extensions of the translation group of a two-dimensional space. This problem is reduced to the search for finding Lie algebras of locally doubly transitive extensions of the translation group. The basis operators of such Lie algebras are found from solutions of systems of second-order differential equations. We prove that the matrices of these systems commute with each other and can be simplified by reduction to the Jordan form. From the solutions of systems of differential equations, the Lie algebras of all locally doubly transitive extensions of the translation group of the plane are obtained. Using the exponential mapping, we calculate locally doubly transitive Lie transformation groups.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:85-96
pages 85-96 views

Theorems on iterations of partial integrals in a space with mixed norm

Lyakhov L.N., Trusova N.I.

Abstract

In 2, we consider partial integrals acting on the first or second variable and obtain conditions for bounded action in spaces of continuous functions with respect to one of the variables with values in the Lebesgue class Lp with respect to the other variable. We assume that these functions are defined in a finite rectangle D ∈ 2. We prove theorems on the boundedness of iterations of these partial integrals in the spaces of anisotropic functions C(Dα(1);Lp(Dα¯(1))), where α and αare indices complementing each other up to the double index (1; 2).

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:97-103
pages 97-103 views

Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel

Orlov S.S., Budnikova O.S., Botoroeva M.N.

Abstract

We consider a class of Volterra integro-algebraic equations with two integrable power singularities in the kernel and indicate fundamental difficulties in studying such equations. In terms of matrix pencils, we formulate sufficient conditions for the existence of a unique continuous solution. Also, we propose multi-step methods for solving such equations based on the method of integrating products and Adams quadrature formulas and present the results of numerical experiments.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:104-114
pages 104-114 views

On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes

Polovinkina M.V., Polovinkin I.P.

Abstract

Sufficient conditions for the stability of the stationary solution in the population diffusion model of tumor growth and in the model of the immune response are established. An effect is revealed that is inherent only in the diffusion model, in contrast to the point model: the trivial solution may turn out to be stable depending on the size of the domain considered.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:115-123
pages 115-123 views

Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions

Rykhlov V.S.

Abstract

In this paper, we consider a mixed problem for a second-order hyperbolic equation with constant coefficients and a mixed partial derivative. We assume that the boundary conditions are splitted (i.e., one condition is posed at the left endpoint of the main interval and the other at the right endpoint) and the roots of the characteristic equation are simple and lie on the positive half-line. The coefficients of the equation and the boundary conditions are constrained by conditions that guarantee the absence of the two-fold completeness of eigenfunctions of the corresponding spectral problem for the differential quadratic pencil. Using the Poincare-Cauchy contour integral method, we to obtain sufficient conditions for the solvability of this problem.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:124-134
pages 124-134 views

Contact problem for a second-order parabolic equation with Dini-continuous coefficients

Sakharov S.I.

Abstract

We consider a contact problem for second-order parabolic equations with Dini-continuous coefficients in a strip divided by a nonsmooth curve into two domains. The existence and uniqueness of a regular solution to this problem is proved.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:135-145
pages 135-145 views

On the first initial-boundary-value problem of heat conduction in a domain with curvilinear lateral boundaries

Fedorov K.D.

Abstract

We consider the first initial-boundary-value problem for the heat equation in a bounded domain Q with curvilinear lateral boundaries. Using the method of boundary integral equations, we prove the existence of a solution to this problem in the class C21 (Q).

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:146-159
pages 146-159 views

Extremal properties of means of fuzzy random variables

Khatskevich V.L.

Abstract

In this paper, we examine extremal properties of fuzzy expectations and expectations of fuzzy random variables. We introduce a new mean characteristic—a scalar random variable that characterizes a given fuzzy random variable—and prove its extremal properties. Also, we study linear regressions of fuzzy random variables, obtain a formula for the optimal linear fuzzy regression, and prove that its correlation with the predicted value is maximal.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:160-169
pages 160-169 views

Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay

Tsekhan O.B., Naligama C.A.

Abstract

The splitting transformation is a generalization of the well-known Chang transformation for linear, stationary, singularly perturbed system with many delays in slow-state variables; it reduces the original two-speed system to two independent subsystems of smaller dimensions with different rates of change of variables. The splitting transformation leads us to Riccati and Sylvester equations for functional matrices, which can be found in the form of asymptotic series in powers of the small parameter. In this work, we prove that asymptotic approximations of any order of accuracy based on these series can be represented as finite sums in powers of А. We compare exact solutions with approximations obtained by the method proposed.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2022;204:170-184
pages 170-184 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».