Vol 29, No 147 (2024)

Cover Page

Full Issue

Articles

Universal Monte Carlo method for Lévy processes and their extrema

Grechko A.S., Kudryavtsev O.E.

Abstract

The article proposes a universal approach to constructing Monte Carlo methods for pricing options with payoffs depending on the joint distribution of the final position of the Lévy process XT and its infimum IT (or supremum ST). We derive approximate formulas for the conditional cumulative distribution functions of the Lévy process P(XT<x|ST=y) (P(XT<x|IT=y)), which are expressed through the partial derivative with respect to y of the joint cumulative distribution function P(XT<x,ST<y) (P(XT<x,IT<y)) and the density of the infimum (or supremum) at the final moment of time. By applying the Laplace transform to the joint cumulative distribution function of the Lévy process and its extremum, we use the approximate Wiener–Hopf factorization to represent the image of its partial derivative. By inverting the Laplace transform using the Gaver–Stehfest algorithm, we find the desired conditional cumulative distribution function. The developed algorithm for simulating the joint position of the Lévy process and its extremum at a given point in time consists of two key stages. At the first stage, we simulate the extremum value of the Lévy process based on the approximation of its cumulative distribution function P(ST<x) (or P(IT<x)). In the second step, we simulate the final value of the Lévy process based on the approximation of the conditional cumulative distribution function of the final position of the Lévy process relative to its extremum. The universality of the Monte Carlo method we developed lies in the implementation of a uniform approach for a wide class of Lévy processes, in contrast to classical approaches, when simulations are essentially based on the features of the probability distribution associated with the simulated random process or its extrema. In our approach, it is enough to know the characteristic exponent of the Lévy process. The most time-consuming computational unit for simulating a random variable based on a known cumulative distribution function can be effectively implemented using neural networks and accelerated through parallel computing. Thus, on the one hand, the approach we propose is suitable for a wide class of Lévy models, on the other hand, it can be combined with machine learning methods.

Russian Universities Reports. Mathematics. 2024;29(147):233-243
pages 233-243 views

Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1

Greshnov A.V., Zhukov R.I.

Abstract

For a 2-step Carnot group Dn,  dimDn=n+1,  with horizontal distribution of corank 1, we proved that the minimal number NXDn such that any two points u,vDn can be joined by some basis horizontal k-broken line (i.e. a broken line consisting of k links) LkXDn(u,v),  kNXDn,does not exeed n+2. The examples of Dn such that NXDn=n+i, i=1,2, were found. Here XDn={X1,,Xn} is the set of left invariant basis horizontal vector fields of the Lie algebra of the group Dn, and every link of LkXDn(u,v) has the form exp(asXi)(w),  s[0,s0],  a=const.

Russian Universities Reports. Mathematics. 2024;29(147):244-254
pages 244-254 views

Method of approximate solution of partial derivative equations

Zhukovskaya T.V., Zhukovsky E.S., Rybakov M.А., Trofimova A.S.

Abstract

The article considers a partial differential equation of the form

utft,x,y,u,ux,uy,2ux2,2uy2,2uxy  x,yD2,  t0,

with respect to an unknown function u, defined in a domain D of spatial variables x,y and for t0. A method for finding an approximate solution is proposed. The equation under consideration is replaced by an approximate one by introducing the shift operator S:DD, which allows replacing at each step of the calculations the unknown values of the function u(x,y,t) on the right side with the values u(S(x,y),t), obtained at the previous step. The idea of the proposed method goes back to the idea of the Tonelli method, known for differential equations with respect to functions of one variable (with ordinary, not partial derivatives). The advantages of the proposed method are the simplicity of the obtained iteration relation and the possibility of application to a wide class of equations and boundary conditions. In the article, iteration formulas are obtained for solving a boundary value problem with the Dirichlet condition for spatial variables and with an initial or boundary condition for the variable t. Based on the proposed method, an approximate solution is obtained for a specific initial-boundary value problem for the heat conductivity equation in a square domain.

Russian Universities Reports. Mathematics. 2024;29(147):255-267
pages 255-267 views

Introduction to the theory of positional differentional games of systems with aftereffect (based on the i-smooth analisys methodology)

Kim A.V.

Abstract

Although the foundations of the theory of positional differential games of systems with aftereffect described by functional differential equations (FDE) were developed back in the 1970s by N. N. Krasovsky, Yu. S. Osipov and A. V. Kryazhimsky, there are still no works that, similar to [N. N. Krasovsky, A. I. Subbotin. Positional Differential Games. Moscow: Nauka, 1974, 457 p.] (hereinafter referred to as [KS]), would represent a “complete” theory of positional differential games with aftereffect.

The paper presents an approach to constructively transferring all the results of the book [KS] to systems with aftereffect. This approach allows us to present the theory of positional differential games of systems with aftereffect in the same constructive and complete form as for the finite-dimensional case in [KS]. The approach is based on the methodology of i-smooth analysis. The obtained results of the theory of positional differential games of systems with aftereffect are completely analogous to the corresponding results of the finite-dimensional Krasovsky–Subbotin theory.

Russian Universities Reports. Mathematics. 2024;29(147):268-295
pages 268-295 views

Omniwheel implementation of the Suslov problem with a rheonomic constraint: dynamic model and control

Mikishanina E.А.

Abstract

The classical Suslov problem of the motion of a rigid body with a fixed point is well known and has been studied in detail. In this paper, an omniwheel implementation of the Suslov problem is proposed. The controlled motion of a rigid body with a fixed point in the presence of scleronomic nonholonomic constraints and rheonomic artificial kinematic constraint is considered. The rigid body rotates around a fixed point, rolls around a spherical shell from the inside and contacts it by means of omniwheels with a differential actuator. We believe that the omniwheels are in contact with the spherical shell only at one point. In order to subordinate the motion of the rigid body to an artificial rheonomic constraint, a differential actuator creates control torques on omniwheels. Based on the d’Alembert–Lagrange principle, equations of motion of the mechanical system with indeterminate multipliers specifying constraint reactions are constructed. The problem is reduced to the study of a non-autonomous two-dimensional dynamical system. Using the generalized Poincaré transformation, the study of a two-dimensional dynamical system is reduced to the study of the stability of a one-parameter family of fixed points for a system of differential equations with a degenerate linear part. We determine numerical parameters for which phase trajectories of the system are bounded and for which phase trajectories of the system are unbounded. The results of the study are illustrated graphically. Based on numerical integration, maps for the period (Poincaré sections) and a map of dynamic regimes are constructed to confirm the Feigenbaum scenario of transition to chaotic dynamics.

Russian Universities Reports. Mathematics. 2024;29(147):296-308
pages 296-308 views

Investigation of periodic solutions of a system of ordinary differential equations with quasi-homogeneous non-linearity

Naimov A.N., Bystretskii M.V.

Abstract

The article considers a system of ordinary differential equations in which the main nonlinear part, which is a quasi-homogeneous mapping, is distinguished. The question of the existence of periodic solutions is investigated. Consideration of a quasi-homogeneous mapping allows us to generalize previously known results on the existence of periodic solutions for a system of ordinary differential equations with the main positively homogeneous non-linearity. An a priori estimate for periodic solutions is proved under the condition that the corresponding unperturbed system of equations with a quasi-homogeneous right-hand side does not have non-zero bounded solutions. Under the conditions of an a priori estimate, the following results were obtained: 1) the invariance of the existence of periodic solutions under continuous change (homotopy) of the main quasi-homogeneous non-linear part was proved; 2) the problem of homotopy classification of two-dimensional quasi-homogeneous mappings satisfying the a priori estimation condition has been solved; 3) a criterion for the existence of periodic solutions for a two-dimensional system of ordinary differential equations with the main quasi-homogeneous non-linearity is proved.

Russian Universities Reports. Mathematics. 2024;29(147):309-324
pages 309-324 views

About complex operator functions of a complex operator variable

Fomin V.I.

Abstract

We consider a family of complex operator functions whose domain and range of values are included in the real Banach algebra of bounded linear complex operators acting in the Banach space of complex vectors over the field of real numbers. It is shown that the study of a function from this family can be reduced to the study of a pair of real operator functions of two real operator variables. The main elementary functions of this family are considered: power function; exponent; trigonometric functions of sine, cosine, tangent, cotangent, secant, cosecant; hyperbolic sine, cosine, tangent, cotangent, secant, cosecant; the main property of the exponent is proved. A complex Euler operator formula is obtained. Relations that express sine and cosine in terms of the exponent are found. For the trigonometric functions of sine and cosine, addition formulas are justified. The periodicity of the exponent and trigonometric functions of sine, cosine, tangent, cotangent is proved; reduction formulas for these functions are provided. The main complex operator trigonometric identity is obtained. Equalities connecting trigonometric and hyperbolic functions are found. The main complex operator hyperbolic identity is established. For the hyperbolic functions of sine and cosine, addition formulas are indicated. As an example of an elementary function from the family of complex operator functions under consideration, a rational function is considered, a special case of which is the characteristic operator polynomial of a linear homogeneous differential equation of n-th order with constant bounded operator coefficients in a real Banach space.

Russian Universities Reports. Mathematics. 2024;29(147):325-351
pages 325-351 views

Some questions connected with implementation of attraction sets accurate to a predetermined neighborhood

Chentsov A.G.

Abstract

Questions connected with implementation of attraction sets (AS) in attainability problem with constraints of asymptotic nature (CAN) are considered. It is investigated the possibility of AS implementation accurate to arbitrary neighborhood in class of closures of attainability sets corresponding to concrete sets from the family generating CAN. Moreover, some relations for AS generated by different CAN are considered (disjunction conditions of AS are investigated). General constructions of neighborhood implementation of AS were applied in the case when these AS were considered in the space of ultrafilters of broadly understood measurable space (MS). In particular, the case when CAN are defined by a filter was investigated in detail; for this case, under non-restrictive conditions on the original MS, the set of ultrafilters majorizing the original filter is implemented as AS. In this case (of ultrafilter space) variants of equipment of ultrafilter set with topologies of Stone and Wallman types are investigated separately.

Russian Universities Reports. Mathematics. 2024;29(147):352-376
pages 352-376 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».