№ 2 (2024)

Обложка

Весь выпуск

Статьи

Антропогенное воздействие на береговую зону бухты Коктебель (Черное море) за последние 100 лет

Горячкин Ю.Н.

Аннотация

В связи с проблемой нерационального природопользования рассмотрена динамика берегов одного из популярных курортов Крыма. Цель работы – дать ретроспективную оценку изменений береговой зоны бухты Коктебель, подвергающейся антропогенному воздействию. Использованы материалы обследований, литературные и архивные источники, данные оцифровки береговых линий на космических снимках за 2011–2021 гг. Даны физико-географическая и литодинамическая характеристики бухты. Рассмотрено антропогенное воздействие на береговую зону и отклик береговой линии на него. Показано, что за последние 100 лет антропогенное воздействие на бухту Коктебель привело к сокращению ширины или исчезновению пляжей, изменению их вещественного состава, замене естественного ландшафта антропогенным, что снизило его эстетическую привлекательность. Выделено три периода в эволюции береговой зоны. Для первого характерно постепенное нарастание антропогенного воздействия на ландшафты суши и береговой зоны. Во второй период сложившееся динамическое равновесие нарушилось и баланс наносов стал отрицательным. Это было обусловлено зарегулированием стока водотоков и промышленной разработкой песка, гравия и гальки в береговой зоне. Такое воздействие привело к резкому уменьшению площади пляжей, вплоть до полного их исчезновения на отдельных участках. Третий период характеризуется резким увеличением антропогенного воздействия, которое выразилось в активном (часто незаконном) строительстве на пляжах различных сооружений, а также возведением гидротехнических сооружений с целью защиты и восстановления пляжей. Показано, что к настоящему времени техногенные берега занимают около 3 км, здесь природные процессы трансформировались в природно-антропогенные. Природные ландшафты берегов сохранились только в восточной (протяженностью около 2 км) и западной (около 1.5 км) частях бухты при общей ее длине 7 км. Приводятся сведения о проектах защиты берега, выполненных ранее и реализуемых в настоящее время.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):6-22
pages 6-22 views

Сезонная изменчивость горизонтальных градиентов в крупномасштабных термохалинных фронтальных зонах в Северной Атлантике

Шокурова И.Г., Никольский Н.В., Чернышова Е.Д.

Аннотация

Рассматривается сезонная изменчивость пространственного распределения и величины горизонтальных градиентов температуры, солености и плотности в крупномасштабных поверхностных фронтальных зонах в северной части Атлантического океана. Используются среднемесячные данные о температуре и солености на горизонте 0.5 м океанического реанализа ORAS5 (1958–2021 гг.). Получено, что высокие градиенты температуры, превышающие 2 °С/100 км, солености – 1 ЕПС/100 км, плотности – 1 кг·м–3/100 км, наблюдаются в субполярной и умеренной зонах во фронтах вдоль крупномасштабных течений, переносящих теплые соленые воды из южных широт (Гольфстрим, Северо-Атлантическое течение) и холодные воды с низкой соленостью из арктических районов (Лабрадорское течение, Восточно-Гренландское течение). Эти фронты выделяются в течение всего года. Высокие градиенты солености и плотности также отмечаются летом в тропической зоне во фронте на границе плюма Амазонки, возникающего в результате сезонного стока реки. В указанных пяти фронтальных зонах были выделены области, для которых приводятся количественные оценки сезонной изменчивости градиентов. В субполярной и умеренной зонах максимальные градиенты температуры отмечаются в зимнее время. Прогрев воды в летний сезон сопровождается уменьшением градиентов. Наибольший размах сезонной изменчивости градиентов температуры наблюдается во фронтальных зонах Гольфстрима и Восточно-Гренландского течения. Летом во фронтах субполярных районов происходит повышение градиентов солености вследствие таяния арктических и материковых льдов и увеличения поступления вод с пониженной соленостью. Во фронтальной зоне Восточно-Гренландского течения, а также на границе плюма реки Амазонки отмечается наиболее высокий размах сезонных изменений градиентов солености и плотности. В этих районах возрастает вклад солености в сезонные изменения плотности на поверхности океана. 

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):23-38
pages 23-38 views

Межгодовая изменчивость физических и биологических характеристик вод Крымского шельфа в летний сезон (2010–2020 годы)

Пионтковский С.А., Загородняя Ю.А., Серикова И.М., Минский И.А., Ковалева И.В., Георгиева Е.Ю.

Аннотация

Прибрежная зона Крыма и его шельф являются объектами многолетних комплексных исследований, предопределенных той значимой ролью, которую эти зоны играют в экономической жизни полуострова. Цель работы состоит в выявлении трендов межгодовой изменчивости структурных и функциональных характеристик пелагического сообщества. Данные дистанционных измерений (со спутников), контактных измерений (с борта научно-исследовательского судна) и расчетные параметры использованы для выявления изменчивости физических и биологических характеристик шельфовых вод Крыма в 2010–2020 гг. Показано, что после экологических катаклизмов 1990-х гг., связанных с эвтрофикацией шельфа и трофическим прессом планктонных видов-вселенцев, планктонное сообщество вступило в период относительной стабильности. Межгодовая изменчивость его ключевых структурных и функциональных характеристик (биомассы фитопланктона, интенсивности его биолюминесценции, биомассы зоопланктона, чистой первичной продукции и отношения продукции к биомассе) характеризуется не столько статистически значимыми трендами многолетней изменчивости, сколько межгодовыми колебаниями, обусловленными гидрофизической динамикой. Эта динамика оценивалась двумя параметрами: величиной плотности кинетической энергии и кросс-шельфовым массопереносом в верхних слоях.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):39-59
pages 39-59 views

Характеристики штормового волнения в бухте Ласпи (Черное море) по результатам численного моделирования

Белоконь А.Ю., Фомин В.В.

Аннотация

Исследуются характеристики штормового волнения в бухте Ласпи (Крымский полуостров) с использованием численной гидродинамической модели SWASH с пространственным разрешением 5 м. В качестве граничных условий задаются данные реанализа волнения, полученные на основе спектральной модели SWAN. Анализируются поля значимых высот волн hs и скоростей волновых течений в бухте при штормах различной режимной обеспеченности. Установлено, что при штормах, возможных 1 раз в год, 1 раз в 5, 10 и 25 лет максимальные значения hs в бухте могут достигать 2.5–3.0, 4.0–4.5, 5.0–5.5 и 6.0–6.5 м соответственно. При этом при штормах, возможных 1 раз в 25 лет, усиление волновых скоростей до 1.5–3.0 м/c происходит вблизи берега на глубинах менее 10 м. Влияние на волны защитного мола, построенного в 1980-х гг., является локальным и проявляется в формировании теневой зоны с его подветренной стороны. Обсуждаются вопросы возможного влияния штормового волнения на сокращение донной растительности в бухте Ласпи. Анализ волновой нагрузки на дно бухты показал, что в период экстремальных штормов в ее акватории наиболее подверженными воздействию волн оказываются склоны в области глубин от 2 до 12 м, где значения плотности кинетической энергии увеличиваются до 500–2000 Дж/м3. При этом в западной оконечности бухты плотность может достигать 3000–4500 Дж/м3. В средней части бухты значения энергетической нагрузки невелики. Поэтому к исчезновению здесь донной растительности могло привести не штормовое воздействие, а увеличение мутности воды, вызванное антропогенными факторами. Полученные результаты имеют большое практическое значение для безопасности мореплавания, проектирования и эксплуатации объектов береговой инфраструктуры.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):60-75
pages 60-75 views

Анализ гидролого-гидрохимических факторов трансформации донных фитоценозов в районе мыса Коса Северная (Черное море, Севастополь)

Пархоменко А.В., Васечкина Е.Ф., Латушкин А.А.

Аннотация

Макрофиты выступают в качестве важных биоиндикаторов условий окружающей среды и долгосрочных изменений качества воды, что позволяет использовать макрофитов при изучении динамики донных природных комплексов. Цель работы – выявление основных гидрофизических и гидрохимических факторов, приводящих к изменениям биомассы донных фитоценозов в районе м. Коса Северная. Проанализированы и обобщены литературные источники, результаты ландшафтных и гидроботанических исследований (летний период 1964, 1997, 2006 и 2017 гг.) в прибрежной зоне м. Коса Северная – м. Толстый c использованием данных о температуре воды, содержании в воде нитратов, нитритов, аммония, фосфатов и общего взвешенного вещества в 1998–2021 гг., а также результаты имитационного моделирования динамики биомассы макрофитобентоса в этом районе в 1998–2002 гг. В ландшафтной структуре прибрежной зоны района исследования в разные периоды времени выделялись несколько донных природных комплексов, причем с течением времени их состав и количество менялись. В эрикариево-гонголариевом фитоценозе (0.5–5 м) к 2006 г. произошло увеличение биомассы доминирующих видов, характеризующееся ростом доли эпифитов. В 2017 г. наблюдалось восстановление доминирующих видов, а общая биомасса возросла почти в три раза. Эрикариево-гонголариево-филлофоровый фитоценоз (5–10 м) полностью исчез к 2006 г., а на его месте в 2017 г. была зафиксирована Dictyota spp. Филлофоровый фитоценоз (глубины свыше 10 м) существенно деградировал в 1997 г., его биомасса сократилась почти до нуля. В 2006 г. Phyllophora crispa на этих глубинах не регистрировалась, но к 2017 г. появились отдельные участки дна, где представлена Phyllophora crispa с биомассой, меньшей на порядок по сравнению с 1964 г. Сделан вывод, что зафиксированные трансформации донных сообществ были вызваны в основном изменениями прозрачности воды, связанными с содержанием общего взвешенного вещества. Для слежения за развитием ситуации целесообразно регулярно с частотой раз в несколько лет проводить гидроботанические съемки.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):76-90
pages 76-90 views

Биогенные элементы в водах восточной части Финского залива по результатам исследований 2020–2022 годов

Синякова М.А., Крылова Ю.В., Бронникова Л.В.

Аннотация

Изучена динамика содержания биогенных элементов (минерального (фосфатного) и общего фосфора и аммония) по результатам ежегодных мониторинговых исследований воды восточной части Финского залива, проводившихся в 2020–2022 гг. Анализировалась информация о распределении показателей по горизонтали и по вертикали, поэтому пробы отбирали в поверхностном, придонном, а на глубоководных станциях и в серединном слоях воды. Содержание элементов определяли спектрофотометрическим методом. Сопоставляются и анализируются результаты по среднемедианным значениям. В период исследований концентрация фосфатного фосфора в абсолютном большинстве случаев не превышала ПДК (0.15 мг/дм3), концентрации общего фосфора в среднем соответствовали мезотрофному статусу, хотя наблюдались случаи повышения его концентрации до значений, характерных для эвтрофного статуса водоема: в 2020 г. в придонном и поверхностном слоях воды (в июне в основном на прибрежных станциях (0.091 мг P/дм3) и в сентябре преимущественно в придонном слое на центральных станциях, удаленных от берега), в 2021 г. летом концентрации достигали 0.147 мг P/дм3 (поверхностный слой) и 0.171 мг P/дм3 (придонный слой) на прибрежных станциях, 0.163 мг P/дм3 на центральной станции. Концентрации аммонийного азота в основном находились в пределах ПДК (0.5 мг/дм3). В июне 2021 г. выделялись локальные области вдоль южного и северного берега Финского залива с относительно высоким содержанием аммонийного азота (до 0.285 мг/дм3) в поверхностном и придонном слоях воды. В целом, несмотря на высокую антропогенную нагрузку, концентрации минерального фосфора и аммония в водах Финского залива находились в пределах ПДК, превышения фиксировались редко, обычно в Невской губе, Копорской губе, у побережья Курортного района. Повышенные концентрации общего фосфора на центральных станциях, по-видимому, можно объяснить переносом вещества из западной части залива и диффузией из донных отложений. В среднем в придонных слоях воды обнаруживается более высокое содержание общего фосфора, чем в поверхностных. В целом концентрации биогенных элементов соответствуют мезотрофному статусу водоема.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):91-106
pages 91-106 views

Оценка экологической опасности условий хранения отходов добычи и переработки арсенопиритных минералов

Ле Т.Т., Чан К.Х., Нгуен Х.Ч., Ву Ч.Т., Ле Т.М., До Л.Х.

Аннотация

Арсенопирит – распространенный минерал класса сульфидов, относящийся к минералам гидротермального происхождения. На техногенных отвалах арсенопирит подвергается воздействию агентов выветривания и выделяет мышьяк в окружающую среду. В районах, где разрабатываются минералы Cu, Pb, Zn, загрязнение окружающей среды мышьяком является серьезной проблемой. Результаты настоящего исследования показывают, что при выветривании на отвалах в условиях просачивания и затопления арсенопиритные руды способны выделять мышьяк и тяжелые металлы. Представлены результаты лабораторного эксперимента на разработанной имитационной модели изменения вещества в рудных отвалах шахт при двух условиях: при просачивании (моделирование открытых отвалов руды, через которые просачивается дождевая вода) и затоплении (моделирование отвалов руды, хранящихся в затопленных низинных районах). Модельные условия соответствуют реальным. Соотношение арсенопирита и песка 1:20. Продолжительность эксперимента составляет 60 сут, что позволяет определить мышьяк в различных химических веществах. В ходе эксперимента в условиях инфильтрации воды рН снижается, а окислительно-восстановительный потенциал варьирует от 5 до 50 мВ, при снижении рН выделение металлов и мышьяка в окружающую среду с течением времени увеличивается. По достижении рН значений, характеризующих кислую среду (2.0–4.5), выветривание заметно ускоряется. В условиях избытка воды при высоком содержании растворенного кислорода металлы высвобождаются быстрее. Когда pH находится в диапазоне от 5.5 до 6.0, скорость высвобождения металлов снижается. При окислении руды железо в двухвалентной форме Fe(II) медленно окисляется до Fe(III) при pH, указанном выше. В этих условиях Fe(III) гидролизуется в колонке. Таким образом, выделяющийся мышьяк адсорбируется на Fe(III), а образующийся гидроксид железа Fe(OH)3 покрывает частицы руды. Благодаря уменьшению контакта отработанной руды с водной средой концентрация мышьяка продолжает снижаться. Как в случае просачивания, так и в случае затопления As(III) преобладает над As(V) в потоке, выходящем из рудной колонки. As(III) может быть высокотоксичным для окружающей среды, поэтому следует обратить внимание на обеспечение условий его перехода в менее токсичный As(V).

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):107-121
pages 107-121 views

Влияние седиментационных процессов на динамику содержания соединений кадмия в воде и донных отложениях Азовского моря в 1991–2020 годах

Буфетова М.В.

Аннотация

Кадмий – высокотоксичный металл, активно мигрирующий в системе вода – взвешенные наносы – донные отложения. Цель работы – изучить его содержание в воде и донных отложениях Азовского моря в 1991–2020 гг. и оценить процесс седиментационного самоочищения вод. Данные о распределении кадмия показали, что в воде Таганрогского залива и открытой части моря наблюдалось медленное снижение его концентрации с 1991 по 2009 г. и увеличение в 2010–2016 гг. Концентрация кадмия в воде Азовского моря не превышала предельно допустимую концентрацию (10 мкг/л) для морских вод объектов рыбохозяйственного назначения. Уровень загрязнения донных осадков кадмием в работе оценивался путем сравнения с критериями экологической оценки загрязненности грунтов по «голландским листам». Содержание кадмия в донных осадках до 2010 г. снижалось, после чего было отмечено его увеличение и в открытой части моря, и в Таганрогском заливе. Содержание кадмия превышало значение кларка этого металла на протяжении всего периода исследования. Элиминация кадмия из вод открытой части моря составляла 0.9–6.0 т/год, из вод Таганрогского залива – 0.5–2.4 т/год. Данные оценки потоков кадмия в донные отложения могут характеризовать седиментационное самоочищение вод. Период седиментационного оборота кадмия в открытой части моря и Таганрогском заливе при различных его концентрациях в воде за исследуемый период в среднем составлял 70 и 13.7 лет соответственно с учетом различий в объеме исследуемых акваторий. Зависимость коэффициента накопления кадмия донными отложениями от его концентрации в воде показала, что повышенная интенсивность седиментационного самоочищения вод при низких концентрациях кадмия в воде обеспечивалась высокой концентрирующей способностью донных отложений, связанной с их гранулометрическим составом. В Азовском море глинисто-илистые осадки (фракция 0.01 мм) составляют более 70 %. С увеличением степени загрязнения вод кадмием коэффициент накопления уменьшался и, соответственно, снижался вклад седиментационных процессов в самоочищение вод. Ассимиляционная способность донных отложений в отношении Cd составила в открытой части Азовского моря 3.8 т/год, а в Таганрогском заливе – 0.7 т/год.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):122-136
pages 122-136 views

Оценка безопасности воздействия ультразвуковой установки на состояние некоторых видов рыб Черного моря

Сигачева Т.Б., Гаврюсева Т.В., Скуратовская Е.Н., Кирин М.П., Мороз Н.А.

Аннотация

Для введения в эксплуатацию ультразвуковой установки, эффективной для борьбы с микрофитообрастаниями гидротехнических сооружений атомных электростанций, необходимо проведение натурных исследований, подтверждающих ее безопасность для гидробионтов, в частности рыб, попадающих в зону действия ультразвука. Цель работы состоит в оценке воздействия ультразвуковой установки (мощностью 500 Вт, частотой 27 кГц, силой тока 3 А) на поведенческие реакции, биохимические и гистопатологические показатели некоторых видов рыб Черного моря в условиях морской акватории (б. Карантинная, Черное море). Эксперимент проводили в течение трех дней, в каждый из которых ультразвуковую установку включали на 1 ч при частоте воздействия 27кГц. После этого особи содержались в садках еще на протяжении пяти дней для оценки возможных отсроченных эффектов. Установлено, что на небольшом расстоянии (10–30 см) ультразвуковая установка оказывает на рыб раздражающее и отпугивающее воздействие. Наиболее выраженные поведенческие реакции были отмечены у султанки Mullus ponticus, ставриды Trachurus ponticus, смариды Spicara flexuosum и морского кота Dasyatis pastinaca, наименее выраженные – у морского ерша Scorpaena porсus. При этом на протяжении всего эксперимента гибели рыб не наблюдали ни в опытном, ни в контрольном садках. Достоверные различия между биохимическими показателями в сыворотке крови и печени анализируемых видов рыб из опытного и контрольного садков отсутствуют. Сравнительный анализ индексов гистопатологических изменений печени, жабр и почек, а также общих индексов альтераций у рыб из опытного и контрольного садков не показал достоверных различий. Полученные результаты свидетельствуют, что ультразвуковая установка с заданными характеристиками воздействия не влияет на состояние рыб из опытной группы, что позволяет рекомендовать данную установку к использованию в системах технического водоснабжения атомных электростанций.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):137-152
pages 137-152 views

Динамика линейных и весовых параметров черноморского гребешка Flexopecten glaber ponticus (Bucquoy, Dautzenberg & Dollfus, 1889) при садковом выращивании

Ладыгина Л.В., Пиркова А.В.

Аннотация

Плоский гребешок Flexopecten glaber ponticus (Bucquoy, Dautzenberg & Dollfus, 1889), являющийся эндемиком Черного моря, может быть отнесен к потенциальным объектам культивирования у берегов Крыма. Данные последних лет свидетельствуют о восстановительных процессах в популяции гребешка на Крымском побережье. В массовом количестве гребешок оседает в выростные садки с гигантской устрицей Crassostrea gigas (Thunberg, 1793), что позволяет выращивать его в подвесной культуре благодаря доступности и простоте сбора. Цель работы – изучить сезонную динамику линейного и весового роста черноморского гребешка F. glaber ponticus при садковом выращивании у берегов Крыма. Впервые представлена модель роста, адекватно описывающая линейный рост моллюсков. Определена линейная зависимость высоты раковины гребешка от возраста и экспоненциальная зависимость общего живого веса гребешков от высоты раковины. Показано, что индексы товарного качества F. glaber ponticus: выход мяса, индекс кондиции и гонадосоматический индекс – изменяются в зависимости от сезона. Максимальные значения индекса кондиции и выхода мяса отмечены в апреле и составляли соответственно 63.40 и 33.01 %. Гонадосоматический индекс увеличивался с января по июнь (от 6.8 до 13.14 %) и уменьшался с июля по ноябрь, что связано с процессами гаметогенеза и нереста моллюсков. Доля сухого вещества в мягких тканях составила 16.5 %. Рекомендована продолжительность выращивания (2.5–3 года) и сроки сбора товарной продукции черноморского гребешка как перспективного объекта марикультуры. Для сбора урожая черноморского гребешка товарного размера может быть оптимальным зимне-весенний период.

Экологическая безопасность прибрежной и шельфовой зон моря. 2024;(2):153-164
pages 153-164 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».