Transmembrane receptor ROR1 as a therapeutic target in endometrial cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Endometrial cancer remains one of the most prevalent malignant neoplasms of the female reproductive system. Despite advancements in diagnostics and treatment, aggressive subtypes of the disease are characterized by high rates of metastasis, recurrence, and decreased overall survival, underscoring the need for novel therapeutic targets. One such promising molecular factor is the receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is normally expressed predominantly in embryonic tissues but reactivates in various malignancies, including endometrial cancer.

ROR1 plays a role in the activation of key signaling pathways such as PI3K/Akt/mTOR, MAPK, and Wnt/β-catenin, regulating processes like cell proliferation, apoptosis, invasion, and epithelial-mesenchymal transition. High ROR1 expression correlates with unfavorable clinicopathological features, including high tumor grade, advanced FIGO stages, and decreased overall survival. Moreover, ROR1 contributes to chemoresistance by activating anti-apoptotic Bcl-2 family proteins and supporting inflammatory microenvironment signaling.

This article provides a comprehensive review of the molecular mechanisms involving ROR1, its role in oncogenesis and endometrial cancer progression, and its potential as both a prognostic biomarker and therapeutic target. Current approaches to targeted therapy are discussed, including the application of antibody–drug conjugates such as zilovertamab vedotin, and their prospects for clinical implementation. Given the significance of ROR1 in endometrial cancer pathogenesis, its inhibition may serve as the basis for personalized treatment strategies aimed at overcoming resistance and improving prognosis in patients with aggressive forms of endometrial cancer.

About the authors

Vladislav S. Skossyrskiy

I.M. Sechenov First Moscow State Medical University

Email: onco.vlad@gmail.com
ORCID iD: 0000-0002-3417-2359
SPIN-code: 6910-0652
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Ilsina I. Gilmutdinova

I.M. Sechenov First Moscow State Medical University

Email: ilsinagilmutdinova815@gmail.com
ORCID iD: 0000-0002-7215-5066
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Maxim S. Boot

I.M. Sechenov First Moscow State Medical University

Email: but_mc@mail.ru
ORCID iD: 0009-0000-8468-2106
SPIN-code: 1292-2693
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Polina I. Zelenchenkova

I.M. Sechenov First Moscow State Medical University

Email: zelenchenkovapi@yandex.ru
ORCID iD: 0000-0002-9491-318X
SPIN-code: 8553-3232
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Valeriia V. Kimutsadze

I.M. Sechenov First Moscow State Medical University

Email: lerunya-999@mail.ru
ORCID iD: 0009-0001-4084-3921
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Veronika V. Kimutsadze

I.M. Sechenov First Moscow State Medical University

Email: veronika_kimutsadze@mail.ru
ORCID iD: 0009-0006-7791-4881
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Evgeniia A. Svidinskaya

I.M. Sechenov First Moscow State Medical University

Author for correspondence.
Email: svidinskaya@gmail.com
ORCID iD: 0000-0002-2368-1932
SPIN-code: 3002-6388

MD, Cand. Sci. (Medicine)

Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Mikhail B. Ageev

I.M. Sechenov First Moscow State Medical University

Email: mikhaageev@yandex.ru
ORCID iD: 0000-0002-6603-804X
SPIN-code: 3122-7420

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

Elena A. Sosnova

I.M. Sechenov First Moscow State Medical University

Email: sosnova-elena@inbox.ru
ORCID iD: 0000-0002-1732-6870
SPIN-code: 6313-9959

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119991

References

  1. Crosbie EJ, Kitson SJ, McAlpine JN, et al. Endometrial cancer. Lancet. 2022;399(10333):1412–1428. doi: 10.1016/S0140-6736(22)00323-3
  2. Zhang G, Nie F, Zhao W, et al. Comparison of clinical characteristics and prognosis in endometrial carcinoma with different pathological types: a retrospective population-based study. World J Surg Oncol. 2023;21(1):357. doi: 10.1186/s12957-023-03241-0
  3. Resnick KE, Hampel H, Fishel R, Cohn DE. Current and emerging trends in Lynch syndrome identification in women with endometrial cancer. Gynecol Oncol. 2009;114(1):128–134. doi: 10.1016/j.ygyno.2009.03.003
  4. Aune D, Navarro Rosenblatt DA, Chan DS, et al. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. 2015;26(8):1635–1648. doi: 10.1093/annonc/mdv142
  5. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 2005;97(22):1652–1662. doi: 10.1093/jnci/dji372
  6. Escobedo LG, Lee NC, Peterson HB, Wingo PA. Infertility-associated endometrial cancer risk may be limited to specific subgroups of infertile women. Obstet Gynecol. 1991;77(1):124–128.
  7. Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–17. doi: 10.1016/0090-8258(83)90111-7
  8. Liu D, Gunther K, Enriquez LA, et al. ROR1 is upregulated in endometrial cancer and represents a novel therapeutic target. Sci Rep. 2020;10(1):13906. doi: 10.1038/s41598-020-70924-z
  9. Zhang H, Yan X, Ke J, et al. ROR1 promotes the proliferation of endometrial cancer cells. Int J Clin Exp Pathol. 2017;10(10):10603–10610.
  10. Henry CE, Llamosas E, Daniels B, et al. ROR1 and ROR2 play distinct and opposing roles in endometrial cancer. Gynecol Oncol. 2018;148(3):576–584. doi: 10.1016/j.ygyno.2018.01.025
  11. Karachaliou N, Gimenez-Capitan A, Drozdowskyj A, et al. ROR1 as a novel therapeutic target for EGFR-mutant non-small-cell lung cancer patients with the EGFR T790M mutation. Transl Lung Cancer Res. 2014;3(3):122–130. doi: 10.3978/j.issn.2218-6751.2014.03.02
  12. Borcherding N, Kusner D, Liu GH, Zhang W. ROR1, an embryonic protein with an emerging role in cancer biology. Protein Cell. 2014;5(7):496–502. doi: 10.1007/s13238-014-0059-7
  13. Dudas J, Ladanyi A, Ingruber J, et al. Epithelial to mesenchymal transition: a mechanism that fuels cancer radio/chemoresistance. Cells. 2020;9(2):428. doi: 10.3390/cells9020428
  14. Celià-Terrassa T, Kang Y. How important is EMT for cancer metastasis? PLoS Biol. 2024;22(2):e3002487. doi: 10.1371/journal.pbio.3002487
  15. Yang J, Antin P, Berx G, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341–352. doi: 10.1038/s41580-020-0237-9
  16. Syed MA, Bhat B, Wali A, et al. Epithelial to mesenchymal transition in mammary gland tissue fibrosis and insights into drug therapeutics. PeerJ. 2023;11:e15207. doi: 10.7717/peerj.15207
  17. Fatima I, Barman S, Rai R, et al. Targeting Wnt signaling in endometrial cancer. Cancers (Basel). 2021;13(10):2351. doi: 10.3390/cancers13102351
  18. McMellen A, Woodruff ER, Corr BR, et al. Wnt signaling in gynecologic malignancies. Int J Mol Sci. 2020;21(12):4272. doi: 10.3390/ijms21124272
  19. Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3. doi: 10.1038/s41392-021-00762-6
  20. Li C, Furth EE, Rustgi AK, Klein PS. When you come to a fork in the road, take it: Wnt signaling activates multiple pathways through the APC/Axin/GSK-3 complex. Cells. 2023;12(18):2256. doi: 10.3390/cells12182256
  21. Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Multiple targets of the canonical WNT/β-Catenin signaling in cancers. Front Oncol. 2019;9:1248. doi: 10.3389/fonc.2019.01248
  22. Asem MS, Buechler S, Wates RB, et al. Wnt5a signaling in cancer. Cancers (Basel). 2016;8(9):79. doi: 10.3390/cancers8090079
  23. Liu D, Enriquez L, Ford CE. ROR2 is epigenetically regulated in endometrial cancer. Cancers (Basel). 2021;13(3):383. doi: 10.3390/cancers13030383
  24. Liu Y, Yang H, Chen T, et al. Silencing of receptor tyrosine kinase ROR1 inhibits tumor-cell proliferation via PI3K/AKT/mTOR signaling pathway in lung adenocarcinoma. PLoS One. 2015;10(5):e0127092. doi: 10.1371/journal.pone.0127092
  25. Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012;18(21):5856–5864. doi: 10.1158/1078-0432.CCR-12-0662
  26. Abdelbary AM, Kaf RM, Lashin ME, et al. RON, ROR1 and SUSD2 expression in tissues of endometrial carcinoma patients. Clinicopathological and prognostic implications. Contemp Oncol (Pozn). 2022;26(2):109–122. doi: 10.5114/wo.2022.118245
  27. Codocedo JF, Inestrosa NC. Wnt-5a-regulated miR-101b controls COX2 expression in hippocampal neurons. Biol Res. 2016;49:9. doi: 10.1186/s40659-016-0071-x
  28. Zhao C, Bu X, Wang W, et al. GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation. PLoS One. 2014;9(1):e85058. doi: 10.1371/journal.pone.0085058
  29. Hashemi Goradel N, Najafi M, Salehi E, et al. Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 2019;234(5):5683–5699. doi: 10.1002/jcp.27411
  30. Lombardi F, Augello FR, Artone S, et al. Up-regulation of cyclooxygenase-2 (COX-2) expression by temozolomide (TMZ) in human glioblastoma (GBM) Cell Lines. Int J Mol Sci. 2022;23(3):1545. doi: 10.3390/ijms23031545
  31. Mori N, Mironchik Y, Wildes F, et al. HIF and COX-2 expression in triple negative breast cancer cells with hypoxia and 5-fluorouracil. Curr Cancer Rep. 2020;2(1):54–63.
  32. Li M, Li M, Wei Y, Xu H. Prognostic and clinical significance of cyclooxygenase-2 overexpression in endometrial cancer: a meta-analysis. Front Oncol. 2020;10:1202. doi: 10.3389/fonc.2020.01202
  33. Lyndin M, Kravtsova O, Sikora K, et al. COX2 Effects on endometrial carcinomas progression. Pathol Res Pract. 2022;238:154082. doi: 10.1016/j.prp.2022.154082
  34. Karvonen H, Barker H, Kaleva L, et al. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells. 2019;8(8):812. doi: 10.3390/cells8080812
  35. Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells. 2021;10(1):142. doi: 10.3390/cells10010142
  36. Yang J, Wang X, Gao Y, et al. Inhibition of PI3K-AKT Signaling Blocks PGE2-Induced COX-2 Expression in Lung Adenocarcinoma. Onco Targets Ther. 2020;13:8197-8208. doi: 10.2147/OTT.S263977
  37. Wang Y, Zhang H. Regulation of Autophagy by mTOR Signaling Pathway. Adv Exp Med Biol. 2019;1206:67–83. doi: 10.1007/978-981-15-0602-4_3
  38. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125(1):25–32. doi: 10.1172/JCI73939
  39. Adamyan LV, Gevorgyan AP. Autophagy as a new link in the mechanism of development of reproductive system disorders (literature review). Russian Journal of Human Reproduction. 2019;25(5):6–14. doi: 10.17116/repro2019250516
  40. Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother. 2021;134:111119. doi: 10.1016/j.biopha.2020.111119
  41. Karvonen H, Perttilä R, Niininen W, et al. Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting. Oncogene. 2019;38(17):3288–3300. doi: 10.1038/s41388-018-0670-9
  42. Samadder S, Paul P, De A. Crosstalk between cell fate and survival pathways during uterine cervical carcinoma progression: a molecular and clinical perspective. Journal of Cancer Metastasis and Treatment. 2023;9:30.
  43. Huang J, Shi Y, Li H, et al. Knockdown of receptor tyrosine kinase-like orphan receptor 2 inhibits cell proliferation and colony formation in osteosarcoma cells by inducing arrest in cell cycle progression. Oncol Lett. 2015;10(6):3705-3711. doi: 10.3892/ol.2015.3797
  44. Bleckmann A, Conradi LC, Menck K, et al. β-catenin-independent WNT signaling and Ki67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases. Clin Exp Metastasis. 2016;33(4):309–323. doi: 10.1007/s10585-016-9780-3
  45. Lopez-Bergami P, Lau E, Ronai Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer. 2010;10(1):65–76. doi: 10.1038/nrc2681
  46. Piki E, Dini A, Raivola J, et al. ROR1-STAT3 signaling contributes to ovarian cancer intra-tumor heterogeneity. Cell Death Discov. 2023;9(1):222. doi: 10.1038/s41420-023-01527-6
  47. Wang WZ, Shilo K, Amann JM, et al. Predicting ROR1/BCL2 combination targeted therapy of small cell carcinoma of the lung. Cell Death Dis. 2021;12(6):577. doi: 10.1038/s41419-021-03855-w
  48. Zhou Q, Zhou S, Wang H, et al. Stable silencing of ROR1 regulates cell cycle, apoptosis, and autophagy in a lung adenocarcinoma cell line. Int J Clin Exp Pathol. 2020;13(5):1108–1120.
  49. Lee KJ, Kim NH, Kim HS, et al. The Role of ROR1 in Chemoresistance and EMT in Endometrial Cancer Cells. Medicina (Kaunas). 2023;59(5):994. doi: 10.3390/medicina59050994
  50. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15–29. doi: 10.1146/annurev-med-050311-201823
  51. Choi MY, Widhopf GF 2nd, Ghia EM, et al. Phase I trial: cirmtuzumab inhibits ror1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell. 20181;22(6):951–959.e3. doi: 10.1016/j.stem.2018.05.018
  52. Liu D, Kaufmann GF, Breitmeyer JB, et al. The anti-ROR1 monoclonal antibody zilovertamab Inhibits the proliferation of ovarian and endometrial cancer cells. Pharmaceutics. 2022;14(4):837. doi: 10.3390/pharmaceutics14040837
  53. Shatsky RA, Batra-Sharma H, Helsten T, et al. A phase 1b study of zilovertamab in combination with paclitaxel for locally advanced/unresectable or metastatic Her2-negative breast cancer. Breast Cancer Res. 2024;26(1):32. doi: 10.1186/s13058-024-01782-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of pathogenesis and signaling pathways activated by ROR1.

Download (98KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».