Протеомный и транскриптомный ответ скелетной мышцы человека на 12-недельную силовую тренировку
- Авторы: Леднев Е.М.1,2, Вепхвадзе Т.Ф.2, Смирнов И.П.1, Султанов Р.И.1, Желанкин А.В.1, Каныгина А.В.1, Попов Д.В.1,2, Генерозов Э.В.1
-
Учреждения:
- Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
- Государственный научный центр Российской Федерации — Институт медико-биологических проблем Российской академии наук
- Выпуск: Том 19, № 2 (2024)
- Страницы: 279-295
- Раздел: Оригинальные исследования
- URL: https://bakhtiniada.ru/2313-1829/article/view/262958
- DOI: https://doi.org/10.17816/gc624325
- ID: 262958
Цитировать
Аннотация
Обоснование. Снижение массы и функциональных возможностей скелетных мышц способствует развитию различных патологий и росту травматизма. Исследование молекулярных механизмов адаптации скелетной мышцы к силовым тренировкам, направленным на увеличение мышечной массы и силы, представляется важной задачей для медицины и спорта.
Цель исследования — оценка изменений протеомного профиля (количественный панорамный масс-спектрометрический анализ) скелетной мышцы и корреляции этих изменений с экспрессией соответствующих мРНК (секвенирование РНК) до и после 12-недельных силовых тренировок, а также с изменениями транскриптома через 8 и 24 ч после однократной силовой нагрузки одной ногой.
Материалы и методы. 10 нетренированных мужчин (возраст — 23 (20,8–25,9) года, ИМТ — 22 (20,9–25,1) кг/м2) в течение 12 нед выполняли жим платформы сидя двумя ногами (3 раза в неделю, 50–75% от максимальной произвольной силы (МПС)). После тренировок добровольцы выполняли однократную силовую нагрузку одной ногой. До и после 12 нед тренировок оценивали МПС и объём четырехглавой мышцы бедра. До и после тренировок, а также через 8 и 24 ч после однократной силовой нагрузки выполняли биопсию латеральной головки четырёхглавой мышцы бедра из нагружавшейся и контралатеральной конечностей для иммуногистохимического, протеомного (ВЭЖХ-МС/МС) и транскриптомного (РНК-секвенирование) анализа.
Результаты. 12 нед силовых тренировок увеличили МПС на 19%, объём четырёхглавой мышцы бедра — на 12%, площадь поперечного сечения волокон 2-го (быстрого) типа — на 29%, минимальный диаметр Фере волокон 2-го типа — на 10% и 1-го (медленного) типа — на 13%. Из 1174 детектированных белков 24 увеличили содержание, 83 понизили. Силовые тренировки привели к росту экспрессии 142 и уменьшению — 65 из 12 112 детектированных мРНК с обогащением функциональных терминов внеклеточной среды, матрикса, базальной мембраны и других. Установлено изменение содержания 433 мРНК через 8 ч и 639 мРНК — через 24 ч при сопоставлении однократно нагружавшейся мышцы с контралатеральной (гены, ассоциированные с сократительной активностью). Изменения содержания лишь малой части белков (5–9 из 107) коррелировали с изменениями соответствующих мРНК.
Заключение. Протеомный анализ показал, что 12-недельная силовая тренировка оказала слабое влияние на относительное содержание высокопредставленных белков в мышце. Прирост мышечной массы, вызванный тренировкой, по-видимому, объясняется одинаковым изменением скорости синтеза/деградации детектированных белков. Сопоставление протеомных данных с изменениями экспрессии мРНК после 12-недельной тренировки, а также через 8 и 24 ч после однократной нагрузки (ответ генов, специфический для сократительной активности) показало, что изменение содержания белков, вызванное силовой тренировкой, регулируется преимущественно на посттранскрипционном уровне.
Ключевые слова
Полный текст
ВВЕДЕНИЕ
Увеличение массы и силы мышц важно для спорта, поддержания здоровья и качества жизни (физической культуры), а также восстановительной медицины. Последнее связано с тем, что скелетная мускулатура составляет значительную (30–40%) часть массы тела и играет ключевую роль в регуляции углеводно-жирового обмена в организме человека. Снижение массы и функциональных возможностей скелетных мышц обусловливает развитие метаболических нарушений, заболеваний сердечно-сосудистой системы, повышение риска травматизации. Поэтому исследование молекулярных механизмов адаптации скелетной мышцы к физическим упражнениям, направленным на увеличение мышечной массы и силы, представляется важной задачей.
Однократная силовая нагрузка вызывает кратковременное увеличение скорости синтеза мышечных белков, связанное с активацией ключевого регулятора трансляции — комплекса mTORC1 [1–3]. Повышение скорости синтеза белка после каждой нагрузки является основным механизмом увеличения мышечной массы и максимальной силы при регулярных силовых тренировках. В нескольких протеомных исследованиях была сделана попытка выявить белки, специфически регулируемые в скелетной мышце человека при регулярных силовых тренировках [4–7]. В этих работах глубина протеомного анализа (от 157 до 1377 детектированных белков) и число белков, изменивших экспрессию (от 40 до 134), значительно различались, а полученные изменения плохо согласовывались между собой [4, 5, 7].
Изменение содержания мРНК является одним из факторов, регулирующим содержание белка. В ряде работ исследовали изменения транскриптома скелетной мышцы человека после регулярных силовых тренировок [8–14] и однократной силовой нагрузки у нетренированных и тренированных людей [9, 13–15]. Изменение содержания мРНК после однократной нагрузки может быть вызвано не только сократительной активностью, но и действием системных факторов (циркадные осцилляции, питание и т.п.). Действительно, было показано, что транскриптом скелетной мышцы грызунов и людей подвержен выраженным циркадным колебаниям, которые включают гены-регуляторы миогенеза [16–19]. Сопоставление транскриптомного ответа на однократную нагрузку в нагружаемой и ненагружаемой (контралатеральной) мышце даёт возможность оценить ответ генов, специфический для сократительной активности, как показано в работе, исследовавшей эффекты аэробной физической нагрузки [20]. В нескольких исследованиях использован такой подход для изучения специфического ответа транскриптома на однократную силовую нагрузку [10, 21]. Однако в этих работах была малая выборка, а ответ на разных временн΄ых точках исследовали у разных добровольцев, что увеличивает вариабельность результатов. Помимо этого, до сих пор не изучена роль изменения транскриптома (изменения базальной экспрессии после регулярных тренировок и специфического ответа генов на однократную нагрузку) в изменении протеома скелетной мышцы после регулярных силовых тренировок.
Цель исследования — изучить влияние регулярных силовых тренировок на изменение протеомного профиля (количественный панорамный масс-спектрометрический анализ) скелетной мышцы и оценить, коррелируют ли эти изменения с изменением экспрессии соответствующих мРНК (секвенирование РНК).
МАТЕРИАЛЫ И МЕТОДЫ
Организация исследования
Десять молодых мужчин (возраст — 23 (20,8–25,91) года, индекс массы тела — 22 (20,9–25,1) кг/м2) в течение 12 нед тренировали мышцы-разгибатели ног в упражнении «жим платформы сидя обеими ногами». Увеличение мышечной массы при регулярных силовых тренировках зависит прежде всего от развития выраженного утомления мышцы, а не от величины используемой нагрузки [22]; при этом оптимальная для роста мышечной массы и силы тренировочная программа состоит из 2–5 рабочих подходов за тренировку, двух и более тренировок в неделю [23, 24]. Поэтому в нашем исследовании добровольцы тренировались 3 раза в неделю, чередуя нагрузки разной интенсивности: понедельник — 3 подхода (65% максимальной произвольной силы (МПС), до отказа); среда — 3 подхода (50% МПС, 25 повторов) и пятница — 4 подхода (75% МПС, до отказа); подходы разделялись 4 мин отдыха. Каждая тренировочная сессия включала разминку (50% МПС, 12 повторов).
Перед 12-недельной тренировкой проводили магнитно-резонансную томографию (МРТ) обоих бёдер и определяли МПС как наибольшую нагрузку, при которой доброволец мог выполнить полное разгибание обеих ног. Через 48 ч брали биопсию из m. vastus lateralis (рис. 1). МПС оценивали каждые 2–3 нед для коррекции тренировочной нагрузки. Через 48 ч после окончания тренировочного периода проводили МРТ обоих бёдер и определяли МПС обеих ног и одной ноги (случайный выбор), которая через 24 ч нагружалась во время тестового тренировочного занятия (упражнение «жим платформы сидя одной ногой»: разминка (50% МПС, 12 повторов) + 4 подхода (65% МПС, до отказа). Через 8 и 24 ч после окончания тестового тренировочного занятия брали биопсии из m. vastus lateralis работавшей и неработавшей ноги. Процедуру осуществляли после 30 мин покоя в положении лежа из средней трети m. vastus lateralis под локальной анестезией (2 мл 2% лидокаина) с помощью 6 мм модифицированной иглы Бергстрома с аспирацией [25]. Каждую последующую биопсию брали на 4 см проксимальнее предыдущей. Полученные образцы ткани быстро очищали от крови и соединительной ткани, замораживали в жидком азоте и хранили при –80 °С.
Рис. 1. Дизайн исследования. МПС — максимальная произвольная сила
Fig. 1. Study design. МПС — maximum voluntary contraction
Этическая экспертиза
Все испытуемые подписали форму добровольного информированного согласия на участие в исследовании, утверждённую в составе протокола исследования этическим комитетом. Исследование одобрено этическим комитетом ФГБУ ФНКЦ ФХМ им. Ю.М. Лопухина ФМБА России (протокол № 202/06/01 от 01 июня 2021 г.).
Магнитно-резонансная томография
Объём четырехглавой мышцы бедра (m. quadriceps femoris) оценивали с помощью томографа Espree (Siemens, Германия) 1,5 Тл (режим Т1, толщина среза — 1 мм) и программы Radiant (Medixant, Польша). Площадь поперечного сечения (ППС) m. quadriceps femoris оценивали на всех срезах, кроме двух проксимальных и дистальных, и затем вычисляли объём m. quadriceps femoris как произведение суммы ППС мышцы и шага среза. До и после тренировок оценивали одинаковое количество срезов на одном и том же уровне у каждого добровольца.
Иммуногистохимический анализ мышечной ткани
Иммуногистохимический анализ поперечных срезов волокон m. vastus lateralis, фиксированных с помощью среды Tissue-Tek (Sakura Finetek USA, США) и замороженных в жидком азоте, был проведён до и после 12 нед силовых тренировок (базальные пробы, см. рис. 1). Срезы толщиной 8 мкм (криостат CM1850; Leica Microsystems, Германия) фиксировали на предметных адгезивных стеклах Polysine (Thermo Fisher Scientific, США), инкубировали при комнатной температуре в течение 15 мин, трижды отмывали фосфатно-солевым буфером в течение 5 мин и затем инкубировали в течение 1 ч со смесью мышиных антител против медленной изоформы тяжёлых цепей миозина (1:5000, M8421) и кроличьих антител против дистрофина (1:500, PA5-32388) — оба производства Sigma-Aldrich, США. Срезы отмывали в фосфатно-солевом буфере и инкубировали в смеси вторичных FITC-конъюгированных анти-мышиных (1:100, F0257; Sigma-Aldrich) и Alexa Fluor 555 конъюгированных анти-кроличьих (1:1000, A32732; Thermo Fisher Scientific) антител. После отмывки срезы помещали в среду Slow Fade (Thermo Fisher Scientific) и фиксировали флуоресценцию на микроскопе ZOE Cell Imager (Bio-Rad, США).
Анализ изображений проводили с помощью программы ImageJ (NIH, США): определяли ППС, минимальный диаметр Фере (минимум по 100 быстрых и медленных волокон на срезе), долю быстрых и медленных волокон на срезе и их относительную площадь на срезе.
Протеомный анализ и обработка данных
Образцы ткани (~10 мг) гомогенизировали в 143 мкл лизирующего буфера (4% додецилсульфат натрия; 0,1 М Трис; 0,1 М дитиотритол; pH=7,6). Лизат кипятили в течение 5 мин при 95 °С, переносили в микропробирки microTUBE-130 (Snap-Cap; Covaris, США) и обрабатывали ультразвуком (средняя мощность — 20 Вт, 30 с × 4; фокусирующий ультразвуковой генератор ME220 (Covaris). После центрифугирования в течение 5 мин при 30 000 g и 20°С концентрацию белка в супернатанте измеряли флуориметрическим методом с помощью флуориметра Qubit 4 (Thermo Fisher Scientific), затем 100 мкг белка загружали на центрифужный фильтр Microcon YM-30 (Merck, Германия) и гидролизовали методом MED-FASP [26] в течение ночи при 37 °С, используя 1 мкг LysC (Promega, США). После смывали пептиды и добавляли 2 мкг трипсина (Thermo Fisher Scientific, инкубация в течение 7 ч при 37 °С) и повторно смывали пептиды в новую пробирку. Обе фракции пептидов концентрировали до 20–25 мкл при 45 °С с использованием прибора Concentrator plus (Eppendorf, Германия) и метили изобарическими метками TMT10plex (Thermo Fisher Scientific) согласно рекомендациям производителя. После объединяли пробы, меченные разными метками, для каждой фракции.
После шага трипсинолиза пептидные образцы, содержащие изобарические метки ТМТ (tandem mass tag), анализировали с помощью высокоэффективной жидкостной хроматографии, используя систему Dionex UltiMate 3000 Nano (Thermo Fisher Scientific), оснащённую колонкой C-18 лабораторного изготовления длиной 50 см и внутренним диаметром 100 мкм, и 2,4 мкм сорбента Kinetex C18 (Phenomenex, США). Скорость элюента через термостатированную при 60 °С колонку составляла 250 мкл/мин. Буфер A представлял собой раствор 0,1% муравьиной кислоты в воде (для жидкостной хроматографии/масс-спектрометрии), а буфер B — 80% ацетонитрила и 0,1% муравьиной кислоты в воде (для жидкостной хроматографии/масс-спектрометрии). При разделении использовали линейный градиент буфера Б от 3 до 50% продолжительностью 180 мин. Объём наносимой на предколонку (2 см × 100 мкм, 5 мкм C18; Phenomenex) пробы составлял 5 мкл. Анализ проводили с использованием масс-спектрометра Orbitrap Q Exactive HF-X (Thermo Fisher Scientific), оснащённого источником нанораспыления (+2,2 кВ при температуре капилляра 300 °С). Диапазон сканирования в режиме MS1 был установлен от 450 до 1400 m/z с максимальным временем инжекции 50 мс при разрешении 60 000 (FWHM) и автоматическом уровне усиления (AGC) 3e6. Нормализованная энергия столкновения (NCE) составляла 32% от максимальной. Спектры MS2 регистрировались с окном изоляции 0,7 Да и началом с 110 m/z. Разрешение составляло 60 000 (FWHM), а AGC — 2e5 при максимальном времени накопления 150 мс. В анализе использовали метод Full MS/dd-MS2 (Top12).
Сырые данные обрабатывали с помощью пакета MaxQuant (Институт биохимии Макса Планка, Германия) при стандартных настройках (FDR для пептидов 1%, N-концевое ацетилирование и окисление метионина в качестве переменных модификаций и карбамидометилирование цистеина в качестве фиксированной модификации) с использованием функций Isobaric much between runs и PSM-level weighted ratio normalization [27].
Транскриптомный анализ и обработка данных
Образцы мышечной ткани (~20 мг) гомогенизировали (гомогенизатор TissueLyser II; QIAGEN, Германия) дважды по 1 мин при частоте 30 Гц. РНК выделяли, используя набор RNeasy mini kit (QIAGEN). После оценки концентрации на флуориметре Qubit 3.0 (Thermo Fisher Scientific) и целостности на анализаторе Bioanalyzer 2100 (Agilent, США) РНК очищали от ДНК с использованием набора Turbo DNA-free Kit (Thermo Fisher Scientific) и синтезировали двухцепочечную кДНК с использованием набор Mint-2 («Евроген», РФ). После амплификации фрагментов ПЦР-продукт очищали на магнитных частицах (AMPure XP; Beckman Coulter, США). ДНК фрагментировали (средняя длина — 250 п.н.) ультразвуком (ME 220; Covaris) и очищали на магнитных частицах. Библиотеки готовили из 10 нг очищенной ДНК, используя набор Universal DNA Library Prep Set (MGI Tech, Китай), и секвенировали на анализаторе DNBseq-G400 (MGI Tech) с двух концов (100 п.н., глубина прочтения — 50 млн пар на образец).
После удаления прочтений низкого качества (FastQC v. 0.11.9) и адаптерных последовательностей (trimmomatic v. 0.39) парные прочтения картировали на референсный геном человека GRCh38.p13 (gencode release 37) с помощью STAR v. 2.7.4a. Число уникальных прочтений для экзонов каждого гена определяли при помощи featureCounts (пакет программ Rsubread, среда R), используя аннотацию генома gencode release 37. Дифференциально экспрессируемые гены (ДЭГ) определяли, используя программу DESeq2 при padj <0,1 (поправка Бенджамини–Хохберга). Для анализа функционального обогащения ДЭГ использовали пакет программ clusterProfiler (среда R) и базы данных биологических процессов и клеточных компартментов Gene Ontology.
Статистический анализ данных
Для оценки изменения физиологических показателей использовали критерий Вилкоксона при p <0,05. Статистический анализ масс-спектрометрических данных проводили с помощью пакета программ Perseus (Институт биохимии Макса Планка): после фильтрации (удаление белков, идентифицированных только по одному сайту, по обратным последовательностям, и контаминантов) для белков, идентифицированных по >1 уникальному или razor-пептиду, определяли отношение репортерных ионов (после/до 12 нед тренировок). Это отношение нормировали на среднее содержание двух референсных белков (ACTA1 и GAPDH), как описано нами ранее [28]. Дифференциально экспрессируемые белки оценивали с помощью теста Вилкоксона q (padj) >0,05. Поиск обогащений функциональных групп осуществляли на платформе DAVID с использованием баз данных UniProt и Gene Ontology.
РЕЗУЛЬТАТЫ
Изменения мышечной массы и силы
Как и ожидалось, 12 нед силовых тренировок увеличили МПС на 19% (p=0,002; рис. 2, a), объём m. quadriceps femoris — на 12% (p=0,002; рис. 2, b), ППС волокон 2-го (быстрого) типа — на 29% (p=0,01; рис. 2, c) и минимальный диаметр Фере волокон 2-го типа — на 10% (p=0,037; рис. 2, e) и 1-го (медленного) типа — на 13% (p=0,037; рис. 2, f). Наблюдалась тенденция к увеличению ППС волокон 1-го типа на 17% (p=0,06; рис. 2, d). Соотношение и относительная площадь волокон, занимаемая на срезе, не изменились (p=1,0; рис. 2, g, h и p=0,77; рис. 2, i, j соответственно).
Рис. 2. Влияние 12-недельной силовой тренировки на силу и размеры мышц: силовая тренировка увеличила: a — максимальную произвольную силу (МПС) мышц-разгибателей ног; b — объём m. quadriceps femoris; c — площадь поперечного сечения (ППС) «быстрых» волокон 2-го типа; e — минимальный диаметр Фере «быстрых» волокон 2-го типа и f — «медленных» волокон 1-го типа; силовая тренировка не повлияла: d — на ППС «медленных» волокон 1-го типа и фенотип m. vastus lateralis (g, i, h, j); ** отличие от исходного уровня, p < 0,01
Fig. 2. The effects of resistance training on muscle strength and size: resistance training increased: a — the maximum voluntary contraction (MVC) of the extensor muscles of legs; b — the m. quadriceps femoris volume; c — cross-sectional area (ППС) of «fast» type 2 fibers; e — minimal Feret diameter of «fast» type 2 and f — «slow» type 1 fibers; resistance training did not change: d — ППС of «slow» type 1 fibers; m. vastus lateralis phenotype (g, i, h, j); ** difference from initial level, p < 0.01
Изменение протеомного профиля
Было детектировано 1174 белка (преимущественно высокопредставленные белки — сократительные, саркомерные и митохондриальные, белки внеклеточного матрикса (ВКМ)), из которых 107 белков изменили содержание (приложение 1). Среди 24 белков, содержание которых увеличилось, выделяются регуляторы цитоскелета и ВКМ (VIM, DES, MSN, TUBA8), регуляторы метаболизма гликогена (UGP2, PHKB), митохондриальные белки (IDH3B, SLC25A3, FIS1) (табл. 1). Обогащения терминов UniProt и Gene Ontology данными белками не обнаружено.
Таблица 1. Белки, концентрация которых в m. vastus lateralis увеличилась после 12 нед силовых тренировок, и их принадлежность к функциональным группам
Table 1. Proteins, whose concentration increased in m. vastus lateralis after 12-week resistance training, and their affiliation with functional groups
UniProt ID | Белок | Прирост, % | padj | Функциональная группа |
P08670 | VIM | 25 | 0,043 | Филаменты, внеклеточный матрикс, цитоскелет, транспорт |
P21752 | TMSB10 | 19 | 0,043 | |
P17661 | DES | 11 | 0,043 | |
P26038 | MSN | 8 | 0,033 | |
Q9NY65 | TUBA8 | 8 | 0,043 | |
Q9Y2J8 | PADI2 | 7 | 0,043 | |
Q00325 | SLC25A3 | 18 | 0,043 | Митохондрии |
O43837 | IDH3B | 17 | 0,033 | |
Q9Y3D6 | FIS1 | 13 | 0,033 | |
P56378 | MP68 | 10 | 0,033 | |
P07954 | FH | 9 | 0,043 | |
P04083 | ANXA1 | 12 | 0,043 | Метаболизм глюкозы, гликогена, аминокислот, жиров |
Q03154 | ACY1 | 9 | 0,043 | |
P15090 | FABP4 | 9 | 0,043 | |
Q93100 | PHKB | 7 | 0,033 | |
Q16851 | UGP2 | 5 | 0,043 | |
P07099 | EPHX1 | 20 | 0,033 | Детоксикация |
Q9Y2Q3 | GSTK1 | 3 | 0,033 | |
P50461 | CSRP3 | 13 | 0,033 | Рост и дифференцировка клеток |
Q99584 | S100A13 | 55 | 0,033 | Кальциевая сигнализация |
Q13557 | CAMK2D | 10 | 0,033 | |
Q13557 | MYL6 | 23 | 0,043 | Прочие |
P09936 | UCHL1 | 18 | 0,033 | |
P04406 | GAPDH | 4 | 0,033 |
Примечание: padj — q <0,05 (поправка Бенджамини–Хохберга).
Note: padj — q <0.05 (the Benjamini and Hochberg method).
Среди 83 белков, содержание которых снизилось, присутствовали белки мембраны, цитоскелета и ВКМ (ACTA1, DMD, SYNE2), регуляторы протеолиза (UBE2N, SELENBP1), транскрипции (CNBP, PRMT5), антиоксидантной защиты (PRDX1, SOD1) и кальциевой сигнализации (MYLK2, PVALB, MYOZ2, RYR1) (табл. 2). Наблюдалось обогащение термина клеточного компонента по UniProt «цитоплазма».
Таблица 2. Белки в m. vastus lateralis, содержание которых уменьшилось после 12 нед силовых тренировок, и их принадлежность к функциональным группам
Table 2. Proteins, whose concentration decreased in m. vastus lateralis after 12-week resistance training, and their affiliation with functional groups
UniProt ID | Белок | Снижение, % | padj | Функциональная группа |
Q8WXH0 | SYNE2 | 31 | 0,033 | Филаменты, внеклеточный матрикс, цитоскелет, транспорт |
Q08043 | ACTN3 | 15 | 0,033 | |
O15273 | TCAP | 15 | 0,043 | |
Q16585 | SGCB | 13 | 0,043 | |
P50402 | EMD | 13 | 0,033 | |
Q14118 | DAG1 | 13 | 0,033 | |
P14543 | NID1 | 11 | 0,043 | |
O60763 | USO1 | 11 | 0,033 | |
P11532 | DMD | 9 | 0,043 | |
O75298 | RTN2 | 8 | 0,043 | |
P40123 | CAP2 | 7 | 0,033 | |
Q9NZ01 | TECR | 7 | 0,043 | |
Q9HBL7 | PLGRKT | 4 | 0,033 | |
P68133 | ACTA1 | 4 | 0,033 | |
Q9HCP6 | HHATL | 19 | 0,043 | Регуляция трансляции и гомеостаза белков |
Q9H4A4 | RNPEP | 17 | 0,033 | |
P51665 | PSMD7 | 13 | 0,033 | |
Q96FW1 | OTUB1 | 12 | 0,033 | |
Q13228 | SELENBP1 | 10 | 0,033 | |
P61088 | UBE2N | 10 | 0,043 | |
P30043 | BLVRB | 9 | 0,043 | |
P22061 | PCMT1 | 9 | 0,033 | |
P54136 | RARS | 7 | 0,033 | |
Q9BRF8 | CPPED1 | 6 | 0,043 | |
P48147 | PREP | 6 | 0,033 | |
P63151 | PPP2R2A | 21 | 0,033 | Рост и дифференцировка клеток |
P30086 | PEBP1 | 11 | 0,033 | |
P63000 | RAC1 | 11 | 0,033 | |
Q9NYL2 | ZAK | 10 | 0,033 | |
P55786 | NPEPPS | 9 | 0,033 | |
P13693 | TPT1 | 8 | 0,033 | |
O75531 | BANF1 | 8 | 0,033 | |
Q96DG6 | CMBL | 16 | 0,033 | Прочие |
P23109 | AMPD1 | 15 | 0,033 | |
P49189 | ALDH9A1 | 13 | 0,043 | |
Q04760 | GLO1 | 13 | 0,033 | |
P00491 | PNP | 13 | 0,033 | |
P07108 | DBI | 11 | 0,033 | |
P38606 | ATP6V1A | 11 | 0,033 | |
P49773 | HINT1 | 10 | 0,033 | |
Q9NWV4 | C1orf123 | 9 | 0,043 | |
P10768 | ESD | 9 | 0,033 | |
UniProt ID | Белок | Снижение, % | padj | Функциональная группа |
O00764 | PDXK | 9 | 0,043 | Прочие |
P09622 | DLD | 4 | 0,043 | |
Q6XQN6 | NAPRT | 21 | 0,033 | Детоксикация, ответ на стресс, воспаление |
Q06830 | PRDX1 | 15 | 0,033 | |
P00352 | ALDH1A1 | 13 | 0,033 | |
P30041 | PRDX6 | 11 | 0,033 | |
P00441 | SOD1 | 8 | 0,033 | |
Q9NRX4 | PHPT1 | 8 | 0,043 | |
Q8N8N7 | PTGR2 | 8 | 0,043 | |
P09960 | LTA4H | 8 | 0,033 | |
P29144 | TPP2 | 7 | 0,033 | |
P06732 | CKM | 6 | 0,033 | |
P28161 | GSTM2 | 5 | 0,043 | |
Q9H7C9 | AAMDC | 15 | 0,033 | Регуляция транскрипции |
Q96IU4 | ABHD14B | 13 | 0,033 | |
P21399 | ACO1 | 12 | 0,033 | |
Q9Y235 | APOBEC2 | 11 | 0,033 | |
P62633 | CNBP | 8 | 0,033 | |
O14744 | PRMT5 | 6 | 0,033 | |
Q99497 | PARK7 | 5 | 0,033 | |
P61201 | COPS2 | 5 | 0,033 | |
Q9H0N5 | PCBD2 | 5 | 0,033 | |
Q99733 | NAP1L4 | 4 | 0,033 | |
P20472 | PVALB | 18 | 0,033 | Кальциевый сигналинг и метаболизм |
Q13698 | CACNA1S | 15 | 0,033 | |
P54289 | CACNA2D1 | 15 | 0,033 | |
Q9NZT1 | CALML5 | 15 | 0,033 | |
P21817 | RYR1 | 12 | 0,033 | |
Q9NPC6 | MYOZ2 | 9 | 0,043 | |
P03886 | MT-ND1 | 16 | 0,043 | Митохондрии |
P05091 | ALDH2 | 12 | 0,043 | |
P22830 | FECH | 9 | 0,043 | |
Q16762 | TST | 9 | 0,043 | |
P26440 | IVD | 5 | 0,033 | |
P12882 | MYH1 | 33 | 0,033 | Сократительные белки |
Q9H1R3 | MYLK2 | 21 | 0,043 | |
Q02045 | MYL5 | 17 | 0,033 | |
Q00872 | MYBPC1 | 9 | 0,033 | |
P07951 | TPM2 | 8 | 0,043 | |
Q7Z4W1 | DCXR | 9 | 0,043 | Метаболизм глюкозы, гликогена, аминокислот, жиров |
P15121 | AKR1B1 | 7 | 0,033 |
Изменение транскриптома после 12 нед силовых тренировок и однократной силовой нагрузки
Детектировано 12 112 мРНК, из которых в базальном состоянии после 12-недельной силовой тренировки увеличилось содержание 142 мРНК и уменьшилось — 65 мРНК (приложение 2). Анализ функционального обогащения показал, что гены, изменившие экспрессию, обогатили несколько функциональных категорий клеточных компартментов (extracellular region, extracellular space, extracellular matrix, endoplasmic reticulum lumen, collagen trimer, basement membrane) и молекулярных функций (extracellular matrix structural constituent, extracellular matrix structural constituent conferring tensile strength и calcium ion binding) (приложение 3).
В нагружавшейся мышце относительно базального состояния через 8 ч после однократной силовой нагрузки изменили экспрессию 634 гена, которые обогатили функциональную категорию молекулярных функций transcription factor activity, sequence-specific DNA binding; через 24 ч — 172 гена, обогатившие категорию «Z-диск». При этом 84 гена были общими для обеих временн΄ых точек (рис. 3, a). В контралатеральной ненагружавшейся мышце через 8 ч изменили экспрессию 73 гена; через 24 ч — 119 генов, обогативших категории клеточных компартментов extracellular region, extracellular space, extracellular exosome и extracellular matrix; 8 генов были общими для обеих временн΄ых точек (рис. 3, b).
Рис. 3. Количество генов: a — изменивших экспрессию (относительно исходного уровня) после однократной силовой нагрузки в нагружаемой мышце; b — изменивших экспрессию (относительно исходного уровня) после однократной силовой нагрузки в ненагружаемой мышце контралатеральной ноги; c — ассоциированных с сократительной активностью в мышце нагружаемой ноги (относительно ненагружаемой), после однократной силовой нагрузки; d — пересечение этих наборов генов с генами, изменившими экспрессию в нагружаемой мышце относительно исходного уровня. ДЭГ — дифференциально экспрессируемые гены
Fig. 3. The number of genes that changed expression (relative to the initial level) after an acute resistance exercise in loaded muscle (a) and unloaded muscle of the contralateral leg (b); the number of genes associated with contractile activity in the muscle of the loaded leg (relative to the unloaded leg) after the acute resistance exercise (c); intersection of these gene sets with genes that changed expression in exercised muscle relative to the initial level (d). ДЭГ — differentially expressed genes
При анализе ДЭГ, ассоциированных с сократительной активностью (сопоставление нагружавшейся и контралатеральной контрольной мышцы), обнаружено, что через 8 ч после однократной силовой нагрузки изменили экспрессию 433 гена, а через 24 ч — 639 генов (c обогащением клеточного компартмента «Z-диск»), из них 80 были общими (рис. 3, c). Обращает внимание, что в обеих временн΄ых точках набор ДЭГ, ассоциированных с сократительной активностью, слабо пересекался с набором генов, изменивших экспрессию в нагружаемой мышце относительно базальной точки (рис. 3, d).
При сопоставлении изменений содержания всех 1174 детектированных белков и соответствующих мРНК в результате 12-недельной силовой тренировки из 107 статистически значимо изменивших присутствие белков у 9 значимо и однонаправленно изменилось содержание мРНК, у 98 белков изменения мРНК были не значимы, а для 26 изменивших содержание мРНК содержание белка не изменилось (рис. 4, a). При сопоставлении содержания белков с изменениями мРНК через 8 ч после однократной силовой нагрузки из 107 изменивших содержание белков у 5 значимо и однонаправленно изменилось содержание мРНК, для 102 белков изменения мРНК были не значимы, а для 35 изменивших содержание мРНК содержание белка не изменилось (рис. 4, b). Через 24 ч у 6 белков значимо и однонаправленно изменили присутствие белок и мРНК, у 101 изменившего присутствие белка изменения мРНК были не значимы, а для 68 изменивших содержание мРНК содержание белка не изменилось (рис. 4, с).
Рис. 4. Сопоставление изменения концентрации белков с изменениями соответствующих мРНК в базальном состоянии: a — после 12-недельной силовой тренировки; b — через 8 ч после однократной силовой нагрузки; c — через 24 ч после однократной силовой нагрузки. N.S. — нет значимых изменений
Fig. 4. Comparison of changes in protein with corresponding mRNA changes in basal state: a — after 12 weeks of strength training; b — 8 h after acute resistance exercise; c — 24 h after acute resistance exercise. N.S. — not significant change
ОБСУЖДЕНИЕ
Увеличение максимальной произвольной силы и объёма мышц после длительной силовой тренировки
Как и ожидалось, 12-недельная силовая тренировка мышц-разгибателей обеих ног оказалась эффективна для увеличения силы тренируемых мышц, объёма m. quadriceps femoris и размеров волокон 2-го типа в m. vastus lateralis (см. рис. 2), и эти эффекты были сопоставимы с результатами предыдущих работ [1, 29, 30].
Влияние изменения относительного содержания высокопредставленных белков на прирост мышечной массы
Мы детектировали 1174 преимущественно высокопредставленных белка (при критерии ≥2 пептида/белок), что сопоставимо с глубиной протеомного анализа недавней работы, исследовавшей эффекты регулярных силовых тренировок (1377 белков) [7]. Используя количественный анализ (с изобарической меткой), мы установили, что 12-недельная тренировка изменила содержание небольшой доли (9,1%) преимущественно цитоплазматических белков. Это показывает, что прирост мышечной массы, вызванный тренировкой (см. рис. 2, b), не приводит к выраженному изменению относительного содержания высокопредставленных белков (белки саркомеров, митохондрий, мембраны, ВКМ и др.) и, по-видимому, связан с одинаковым увеличением скорости синтеза/снижением скорости деградации детектированных нами белков. С другой стороны, отсутствие выраженных изменений протеомного профиля может быть объяснено тем, что мы практически не детектировали низкопредставленные белки, включающие большинство сигнальных и регуляторных. Интересно отметить, что малое число специфически регулируемых высокопредставленных белков при силовой тренировке контрастирует с эффектами аэробной тренировки, вызывающей увеличение содержания различных белков митохондрий, ВКМ, шаперонов и т.д. [31, 32].
Предыдущие протеомные исследования, изучавшие эффекты силовых тренировок, выявили изменения экспрессии белков цитоскелета, регуляторов метаболизма аминокислот и углеводов, а также белков ВКМ [4–7], при этом указанные изменения лишь частично пересекаются друг с другом и с нашими результатами. Так, мы показали увеличение содержания некоторых регуляторов метаболизма глюкозы, гликогена и митохондриальных белков, снижение содержания отдельных белков мембраны, антиоксидантной защиты, регуляторов транскрипции и кальциевой сигнализации; разнонаправленные изменения были показаны для белков цитоскелета и ВКМ (см. табл. 1 и 2). Установленное нами изменение экспрессии ряда белков может быть тесно связано с адаптацией скелетной мышцы к регулярным силовым тренировкам, а именно к действию механического и метаболического стресса на мышечное волокно. Так, увеличение содержания виментина (VIM), десмина (DES) и моезина (MSN) играет важную роль в стабилизации цитоскелета, соединении миофибрилл, в частности актина, с базальной мембраной и между собой, а также в регуляции мембранного транспорта. Помимо этого, мы выявили снижение содержания белка тяжёлой цепи миозина MYH1 (экспрессирующегося в волокнах типа IIx), что характерно для адаптации к регулярным силовым нагрузкам [33–35], а также экспрессии ряда других саркомерных белков и их регуляторов (MYLK2, MYL5, MYBPC1, TPM2). Разнонаправленное изменение экспрессии митохондриальных ферментов и транспортеров (повышение: SLC25A3, IDH3B, FIS1, MP68, FH и снижение: MT-ND1, ALDH2, FECH, TST, IVD) и увеличение экспрессии регуляторов метаболизма углеводов и жиров (ANXA1, FABP4, PHKB, UGP2) согласуется с тем, что силовая тренировка может модулировать биогенез митохондрий скелетных мышц, особенно у нетренированных людей [36, 37]. При этом увеличение содержания позитивных (S100A13, CSRP3) и снижение — негативных регуляторов клеточного роста и дифференцировки (PPP2R2A, HHATL, RNPEP, AAMDC, UBE2N, APOBEC2) может быть связано с активацией сателлитных клеток, вызванной повреждением мышечных волокон.
Изменение транскриптома после 12-недельной тренировки и специфический ответ генов на сократительную активность
Гены, изменившие экспрессию после 12-недельной тренировки, были ассоциированы с внеклеточными белками, включая белки ВКМ. Это согласуется с результатами других исследователей, изучавших эффекты различных силовых тренировок [8–14]. Традиционный подход для оценки ответа генов на однократную нагрузку — сопоставление экспрессии генов в работающей мышце после нагрузки относительно исходного уровня (до нагрузки). Нужно отметить, что в этом случае изменения в экспрессии генов могут быть вызваны не только сократительной активностью, но и системными факторами [10, 14, 20]. Эти рассуждения подтверждаются тем, что в нашем исследовании в ненагружаемой мышце после нагрузки обнаружено изменение экспрессии около сотни генов в каждой временнóй точке (см. рис. 3, b). Более того, наборы генов, специфических для сократительной активности (сопоставление нагружаемой и ненагружаемой мышцы), сильно отличались от наборов генов, изменивших экспрессию в нагружаемой мышце относительно исходного уровня: пересечение составило 54 и 15% через 8 и 24 ч после однократной нагрузки (см. рис. 3, d). Такие различия согласуются с результатами работы, изучавшей ответ генов на однократное аэробное упражнение [20], и подчёркивают важность используемого нами методического подхода по поиску генов, специфических для сократительной активности.
Специфический ответ генов на однократное силовое упражнение в нашей работе был меньше, чем в других работах. По-видимому, это связано с тем, что в исследовании [21] специфический ответ генов m. vastus lateralis на однократную силовую нагрузку изучали у нетренированных добровольцев, тогда как в нашем исследовании — после 12-недельной тренировки: 704 гена на 6 ч и 1479 генов на 18 ч в исследовании [21] vs. 433 гена на 8 ч и 639 генов на 24 ч в нашей работе. Несмотря на достаточно большое количество генов, изменивших экспрессию после 12-недельной тренировки (>200), и генов, специфических для сократительной активности (>600) (см. рис. 3, c), мы нашли только несколько обогащённых функциональных категорий, связанных с ВКМ, внеклеточными и саркомерными белками и кальциевой сигнализацией, в отличие от другого исследования со сходным дизайном [10]. Это может объясняться тем, что в работе [10] изучали влияние унилатеральной силовой тренировки (а не билатеральной, как в нашей работе) на мышцы рук (m. biceps brahii), которые значительно отличаются по мышечной композиции и метаболическому обеспечению мышечной работы от m. vastus lateralis. Интересно, что исследование, сходное по дизайну с нашей работой и изучавшее изменение транскриптома m. vastus lateralis после 8-недельной аэробной тренировки и однократной аэробной нагрузки, обнаружило множество различных функциональных категорий, ассоциированных с ответом генов [20]. Сопоставление этих данных с нашим исследованием косвенно показывает, что регуляция на уровне транскрипции играет менее значимую роль при адаптации скелетной мышцы к регулярным силовым нагрузкам, чем к регулярным аэробным нагрузкам.
Сопоставление изменений протеома и транскриптома в результате длительной силовой тренировки
Изменение содержания белка в ткани, вызванное регулярно предъявляемыми стимулами (например, физическими упражнениями), может регулироваться на уровне транскрипции за счёт базального изменения экспрессии генов и/или за счёт транзиторного изменения экспрессии после каждого упражнения. Мы сопоставили изменения протеома после 12-недельной тренировки с изменениями экспрессии соответствующих мРНК после тренировки, а также через 8 и 24 ч после однократной нагрузки. Обнаружено, что изменения содержания лишь единичных белков (5–9 из 107) коррелируют с изменением экспрессии их мРНК (см. рис. 4). Такой результат может объясняться тем, что: 1) изменение содержания белков, вызванное силовой тренировкой, регулируется преимущественно на посттранскрипционном уровне (синтез/деградация белка); 2) нами детектирована только часть протеома (1174 белка из ~10 000 белков, экспрессируемых в тканях человека [38]), состоящая в основном из высокопредставленных белков. Результаты клеточных исследований, изучавших механизмы регуляции содержания различных белков [39, 40], позволяют предположить, что изменение содержания низкопредставленных белков в скелетной мышце более тесно регулируется на уровне транскрипции, чем высокопредставленных белков.
ЗАКЛЮЧЕНИЕ
Количественный масс-спектрометрический протеомный анализ показал, что 12-недельная силовая тренировка оказала слабое влияние на относительное содержание высокопредставленных белков (белки саркомеров, митохондрий, мембраны, внеклеточного матрикса и др.) в m. vastus lateralis у человека. Это означает, что выраженный прирост мышечной массы, вызванный тренировкой, по-видимому, объясняется одинаковым увеличением/снижением скорости синтеза/деградации детектированных нами белков. Сопоставление протеомных данных с изменениями экспрессии соответствующих мРНК после 12-недельной тренировки, а также через 8 и 24 ч после однократной нагрузки (ответ генов, специфический для сократительной активности) показало, что изменение содержания белков, вызванное силовой тренировкой, регулируется преимущественно на посттранскрипционном уровне (синтез/деградация белка).
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ
Приложение 1. Протеом и обогащение. Лист 1 — общие изменения протеома в результате 12-недельной силовой тренировки; лист 2 —– функциональное обогащение белками, увеличившими содержание; лист 3 — функциональное обогащение белками, снизившими содержание. doi: 10.17816/gc624325-4186053
Приложение 2. Транскриптом. Лист 1 — изменения транскриптома в результате 12-недельной силовой тренировки; лист 2 — изменения транскриптома после однократного силового упражнения в работавшей мышце через 8 ч; лист 3 — изменения транскриптома после однократного силового упражнения в работавшей мышце через 24 ч; лист 4 — изменения транскриптома после однократного силового упражнения в неработавшей мышце через 8 ч; лист 5 — изменения транскриптома после однократного силового упражнения в неработавшей мышце через 24 ч; лист 6 — сопоставление изменений транскриптома в работавшей и неработавшей мышце через 8 ч после однократного силового упражнения; лист 7 — сопоставление изменений транскриптома в работавшей и неработавшей мышце через 24 ч после однократного силового упражнения. doi: 10.17816/gc624325-4186055
Приложение 3. Обогащение транскриптома. Лист 1 — функциональное обогащение терминов в результате 12-недельной силовой тренировки; лист 2 — функциональное обогащение терминов через 8 ч после однократного силового упражнения в работавшей мышце; лист 3 — функциональное обогащение терминов через 24 ч после однократного силового упражнения в работавшей мышце; лист 4 — функциональное обогащение терминов через 8 ч после однократного силового упражнения в неработавшей мышце; лист 5 — функциональное обогащение терминов через 24 ч после однократного силового упражнения в неработавшей мышце; лист 6 — функциональное обогащение терминов при сопоставлении работавшей и неработавшей мышц через 8 ч после однократного силового упражнения; лист 7 — функциональное обогащение терминов при сопоставлении работавшей и неработавшей мышц через 24 ч после однократного силового упражнения. doi: 10.17816/gc624325-4186056
Благодарности. Авторы выражают свою признательность научному сотруднику Департамента биологии Падуанского университета (Италия) Лысенко Евгению Алексеевичу за помощь в проведении силовых тренировок и тестирования добровольцев. Работа выполнена с использованием оборудования ЦКП «Геномика, протеомика и метаболомика» на базе Федерального научно-клинического центра физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства России (http://rcpcm.org/?p=2806).
Источник финансирования. Исследование выполнено при финансовой поддержке Российского научного фонда, соглашение № 21-15-00362 «Исследование молекулярно-генетических механизмов морфофункциональных изменений мышечных волокон человека в ходе высокоинтенсивных физических нагрузок».
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
Вклад авторов. Е.М. Леднев, Т.Ф. Вепхвадзе — организация и проведение исследования, взятие мышечных биопсий; И.П. Смирнов — подготовка и проведение количественного панорамного масс-спектрометрического анализа; Р.И. Султанов и А.В. Каныгина — биоинформатический анализ данных; А.В. Желанкин, Е.М. Леднев — выполнение лабораторных исследований, Э.В. Генерозов, Д.В. Попов — организация и проведение исследования, обработка данных, написание статьи.
ADDITIONAL INFORMATION
Supplement 1. Proteome and enrichment. Sheet 1 — total result of proteomic analysis; sheet 2 — functional enrichment by up-regulated proteins; sheet 3 — functional enrichment by down-regulated proteins. doi: 10.17816/gc624325-4186053
Supplement 2. Transcriptome. Sheet 1 — transcriptome changes after 12-week strength training; sheet 2 — transcriptome changes after a single strength exercise in the working muscle after 8 h; sheet 3 — transcriptome changes after a single strength exercise in the working muscle after 24 h; sheet 4 — transcriptome changes after a single strength exercise in the non-working muscle after 8 h; sheet 5 — transcriptome changes after a single strength exercise in the non-working muscle after 24 h; sheet 6 — transcriptome comparison in the working vs non-working muscles 8 h after a single strength exercise; sheet 7 — transcriptome comparison changes in the working vs. non-working muscles 24 h after a single strength exercise. doi: 10.17816/gc624325-4186055
Supplement 3. Transcriptome enrichment. Sheet 1 — functional enrichment (FE) of terms as a result of 12 weeks of strength training; sheet 2 — FE of terms 8 h after a single strength exercise in the working muscle; sheet 3 — FE of terms 24 h after a single strength exercise in the working muscle; sheet 4 — FE of terms 8 h after a single strength exercise in the non-working muscle; sheet 5 — FE of terms 24 h after a single strength exercise in the non-working muscle; sheet 6 — FE of terms when comparing the working and non-working muscles after 8 h after a single strength exercise; sheet 7 — FE of terms when comparing the working and not working muscles 24 h after a single strength exercise. doi: 10.17816/gc624325-4186056
Acknowledgements. We thank Evgeny A. Lysenko (research fellow, Dipartimento di Biologia, Università degli studi Padova, Italy) for assistance in conducting resistance training and testing volunteers. This work was performed using the core facilities of the Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency PCM “Genomics, proteomics, metabolomics” (http://rcpcm.org/?p=2806).
Funding source. The work was supported by the Russian Science Foundation, agreement N 21-15-00362 «Study of molecular and genetic mechanisms of morphofunctional changes in human muscle fibers during high-intensity physical training».
Competing interests. The authors declare that they have no competing interests.
Authors' contribution. E.M. Lednev, T.F. Vepkhvadze — organization and conduct of research, taking muscle biopsies; I.P. Smirnov — preparation and conduct of quantitative panoramic mass spectrometric analysis; R.I. Sultanov and A.V. Kanygina — bioinformatics data analysis; A.V. Zhelankin, E.M. Lednev — conducting laboratory research, E.V. Generozov, D.V. Popov — organization and conduct of research, data processing, article drafting.
1 Здесь и далее указаны медиана и межквартильный разброс.
Об авторах
Егор Михайлович Леднев
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства; Государственный научный центр Российской Федерации — Институт медико-биологических проблем Российской академии наук
Автор, ответственный за переписку.
Email: ledhauz@gmail.com
ORCID iD: 0000-0002-2945-575X
SPIN-код: 5096-2065
Россия, Москва; Москва
Татьяна Федоровна Вепхвадзе
Государственный научный центр Российской Федерации — Институт медико-биологических проблем Российской академии наук
Email: anegina13@gmail.com
ORCID iD: 0000-0002-7352-8469
SPIN-код: 1411-7760
канд. биол. наук
Россия, МоскваИгорь Павлович Смирнов
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
Email: smirnov_i@hotmail.com
ORCID iD: 0000-0003-0402-3392
SPIN-код: 8692-6842
канд. хим. наук
Россия, МоскваРинат Илгизович Султанов
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
Email: rhenium112@gmail.com
ORCID iD: 0000-0003-3918-708X
SPIN-код: 2295-5337
канд. биол. наук
Россия, МоскваАндрей Викторович Желанкин
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
Email: zhelankin.andrey@gmail.com
ORCID iD: 0000-0002-3014-2005
SPIN-код: 7216-1306
канд. биол. наук
Россия, МоскваАлександра Васильевна Каныгина
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
Email: littlemouse91@gmail.com
ORCID iD: 0000-0003-4993-9492
SPIN-код: 1100-0839
Россия, Москва
Даниил Викторович Попов
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства; Государственный научный центр Российской Федерации — Институт медико-биологических проблем Российской академии наук
Email: danil-popov@yandex.ru
ORCID iD: 0000-0002-3981-244X
SPIN-код: 3148-2905
д-р биол. наук, профессор РАН
Россия, Москва; МоскваЭдуард Викторович Генерозов
Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина Федерального медико-биологического агентства
Email: generozov@gmail.com
ORCID iD: 0000-0002-6314-4883
SPIN-код: 9986-7842
канд. биол. наук, доцент
Россия, МоскваСписок литературы
- Виноградова О.Л., Попов Д.В., Нетреба А.И., и др. Оптимизация процесса физической тренировки: разработка новых «щадящих» подходов к тренировке силовых возможностей // Физиология человека. 2013. Т. 39, № 5. С. 71–85. EDN: RBUREZ doi: 10.7868/s0131164613050172
- Solsona R., Pavlin L., Bernardi H., Sanchez A.M. Molecular regulation of skeletal muscle growth and organelle biosynthesis: practical recommendations for exercise training // Int J Mol Sci. 2021. Vol. 22, № 5. P. 2741. doi: 10.3390/ijms22052741
- Mesquita P.H.C., Vann C.G., Phillips S.M., et al. Skeletal muscle ribosome and mitochondrial biogenesis in response to different exercise training modalities // Front Physiol. 2021. Vol. 12. P. 725866. doi: 10.3389/fphys.2021.725866
- Deane C.S., Phillips B.E., Willis C.R.G., et al. Proteomic features of skeletal muscle adaptation to resistance exercise training as a function of age // Geroscience. 2023. Vol. 45, N 3. P. 1271–1287. doi: 10.1007/s11357-022-00658-5
- Haun C.T., Vann C.G., Osburn S.C., et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy // PLoS One. 2019. Vol. 14, N 6. P. e0215267. doi: 10.1371/journal.pone.0215267
- Petriz B.A., Gomes C.P.C., Almeida J.A., et al. The effects of acute and chronic exercise on skeletal muscle proteome // J Cell Physiol. 2017. Vol. 232, N 2. P. 257–269. doi: 10.1002/jcp.25477
- Oertzen-Hagemann V., Kirmse M., Eggers B., et al. Effects of 12 weeks of hypertrophy resistance exercise training combined with collagen peptide supplementation on the skeletal muscle proteome in recreationally active men // Nutrients. 2019. Vol. 11, N 5. P. 1072. doi: 10.3390/nu11051072
- Lundberg T.R., Fernandez-Gonzalo R., Gustafsson T., Tesch P.A. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training // J Appl Physiol (1985). 2013. Vol. 114, N 1. P. 81–89. doi: 10.1152/japplphysiol.01013.2012
- Damas F., Ugrinowitsch C., Libardi C.A., et al. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress // Eur J Appl Physiol. 2018. Vol. 118, N 12. P. 2607–2616. doi: 10.1007/s00421-018-3984-y
- Liu D., Sartor M.A., Nader G.A., et al. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation // BMC Genomics. 2010. Vol. 11. P. 659. doi: 10.1186/1471-2164-11-659
- Nascimento E.B.M., Hangelbroek R.W.J., Hooiveld G.J.E.J., et al. Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers // BMC Med Genomics. 2020. Vol. 13, N 1. P. 124. doi: 10.1186/s12920-020-00784-z
- Stepto N.K., Coffey V.G., Carey A.L., et al. Global gene expression in skeletal muscle from well-trained strength and endurance athletes // Med Sci Sports Exerc. 2009. Vol. 41, N 3. P. 546–565. doi: 10.1249/MSS.0b013e31818c6be9
- Raue U., Trappe T.A., Estrem S.T., et al. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults // J Appl Physiol (1985). 2012. Vol. 112, N 10. P. 1625–1636. doi: 10.1152/japplphysiol.00435.2011
- Gordon P.M., Liu D., Sartor M.A., et al. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis // J Appl Physiol (1985). 2012. Vol. 112, N 3. P. 443–453. doi: 10.1152/japplphysiol.00860.2011
- Dickinson J.M., D’Lugos A.C., Naymik M.A., et al. Transcriptome response of human skeletal muscle to divergent exercise stimuli // J Appl Physiol (1985). 2018. Vol. 124, N 6. P. 1529–1540. doi: 10.1152/japplphysiol.00014.2018
- Catoire M., Mensink M., Boekschoten M.V., et al. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle // PLoS One. 2012. Vol. 7, N 11. P. e51066. doi: 10.1371/journal.pone.0051066
- Schroder E.A., Harfmann B.D., Zhang X., et al. Intrinsic muscle clock is necessary for musculoskeletal health // J Physiol. 2015. Vol. 593, N 24. P. 5387–5404. doi: 10.1113/JP271436
- McCarthy J.J., Andrews J.L., McDearmon E.L., et al. Identification of the circadian transcriptome in adult mouse skeletal muscle // Physiol Genomics. 2007. Vol. 31, N 1. P. 86–95. doi: 10.1152/physiolgenomics.00066.2007
- Miller B.H., McDearmon E.L., Panda S., et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation // Proc Natl Acad Sci U S A. 2007. Vol. 104, N 9. P. 3342–3347. doi: 10.1073/pnas.0611724104
- Popov D.V., Makhnovskii P.A., Shagimardanova E.I., et al. Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle // Am J Physiol Endocrinol Metab. 2019. Vol. 316, N 4. P. E605–E614. doi: 10.1152/ajpendo.00449.2018
- Zambon A.C., McDearmon E.L., Salomonis N., et al. Time- and exercise-dependent gene regulation in human skeletal muscle // Genome Biol. 2003. Vol. 4, N 10. P. R61. doi: 10.1186/gb-2003-4-10-r61
- Schoenfeld B.J., Grgic J., Ogborn D., Krieger J.W. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis // J Strength Cond Res. 2017. Vol. 31, N 12. P. 3508–3523. doi: 10.1519/JSC.0000000000002200
- Krieger J.W. Single vs. multiple sets of resistance // J Strength Cond Res. 2010. Vol. 24, N 4. P. 1150–1159. doi: 10.1519/JSC.0b013e3181d4d436
- Schoenfeld B.J., Ogborn D., Krieger J.W. Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis // Sports Med. 2016. Vol. 46, N 11. P. 1689–1697. doi: 10.1007/s40279-016-0543-8
- Shanely R.A., Zwetsloot K.A., Travis Triplett N., et al. Human skeletal muscle biopsy procedures using the modified Bergström technique // J Vis Exp. 2014. N 91. P. 51812. doi: 10.3791/51812
- Wiśniewski J.R. Quantitative evaluation of Filter aided sample preparation (FASP) and Multienzyme digestion FASP protocols // Anal Chem. 2016. Vol. 88, N 10. P. 5438–5443. doi: 10.1021/acs.analchem.6b00859
- Yu S.H., Kyriakidou P., Cox J. Isobaric matching between runs and novel PSM-level normalization in maxquant strongly improve reporter ion-based quantification // J Proteome Res. 2020. Vol. 19, N 10. P. 3945–3954. doi: 10.1021/acs.jproteome.0c00209
- Popov D.V., Makhnovskii P.A., Zgoda V.G., et al. Rapid changes in transcriptomic profile and mitochondrial function in human soleus muscle after 3-day dry immersion // J Appl Physiol (1985). 2023. Vol. 134, N 5. P. 1256–1264. doi: 10.1152/japplphysiol.00048.2023
- Campos G.E., Luecke T.J., Wendeln H.K., et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones // Eur J Appl Physiol. 2002. Vol. 88, N 1-2. P. 50–60. doi: 10.1007/s00421-002-0681-6
- Douglas J., Pearson S., Ross A., McGuigan M. Chronic adaptations to eccentric training: a systematic review // Sports Med. 2017. Vol. 47, N 5. P. 917–941. doi: 10.1007/s40279-016-0628-4
- Schild M., Ruhs A., Beiter T., et al. Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals // J Proteomics. 2015. Vol. 122. P. 119–132. doi: 10.1016/j.jprot.2015.03.028
- Makhnovskii P.A., Zgoda V.G., Bokov R.O., et al. Regulation of proteins in human skeletal muscle: the role of transcription // Sci Rep. 2020. Vol. 10, N 1. P. 3514. doi: 10.1038/s41598-020-60578-2
- Methenitis S., Spengos K., Zaras N., et al. Fiber type composition and rate of force development in endurance- and resistance-trained individuals // J Strength Cond Res. 2019. Vol. 33, N 9. P. 2388–2397. doi: 10.1519/JSC.0000000000002150
- Pareja-Blanco F., Rodríguez-Rosell D., Sánchez-Medina L., et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle // Scand J Med Sci Sports. 2017. Vol. 27, N 7. P. 724–735. doi: 10.1111/sms.12678
- Andersen J.L., Aagaard P. Myosin heavy chain IIx overshoot in human skeletal muscle // Muscle Nerve. 2000. Vol. 23, N 7. P. 1095–1104. doi: 10.1002/1097-4598(200007)23:7<1095::aid-mus13>3.0.co;2-o
- Zhao Y.C., Wu Y.Y. Resistance training improves hypertrophic and mitochondrial adaptation in skeletal muscle // Int J Sports Med. 2023. Vol. 44, N 9. P. 625–633. doi: 10.1055/a-2059-9175
- Parry H.A., Roberts M.D., Kavazis A.N. Human skeletal muscle mitochondrial adaptations following resistance exercise training // Int J Sports Med. 2020. Vol. 41, N 6. P. 349–359. doi: 10.1055/a-1121-7851
- Wang D., Eraslan B., Wieland T., et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues // Mol Syst Biol. 2019. Vol. 15, N 2. P. e8503. doi: 10.15252/msb.20188503
- Schwanhäusser B., Busse D., Li N., et al. Global quantification of mammalian gene expression control // Nature. 2011. Vol. 473, N 7347. P. 337–342. Corrected and republished from: Nature. 2013. Vol. 495, N 7439. P. 126–127. doi: 10.1038/nature10098
- Jovanovic M., Rooney M.S., Mertins P., et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens // Science. 2015. Vol. 347, N 6226. P. 1259038. doi: 10.1126/science.1259038
Дополнительные файлы
