Period addition cascade in a model of neuron-glial interaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We analyze a system of four differential equations that describe the dynamics of a neuron-glial network using the mean field approximation [1, 2]:

(τ=–E+α ln(1+e1/α(JuxE+I0)),

=(1–x)/τDuxE,(1)

=U(y)–u/τF+U(y)(1–u)E,

=–y/τy+βσ(x),

where E(t) is the average activity, x(t) is the fraction of available neurotransmitter released into the synaptic gap with a probability u(t); y(t) is the fraction of the gliatransmitter released by the astrocyte. Sigmoidal functions U(y) and σ(x) correspond to changes in the base probability level u(t) during the release of the gliatransmitter and activation of astrocytes during neurotransmitter release, respectively. The input inhibitory current corresponds to a bifurcation parameter with a negative value of I0 <0, while the remaining parameters have positive and fixed values. The rest of the parameters are positive and fixed. For a detailed description of the model, including information on the type of functions and parameter values, refer to works [1, 2].

For a constant value of U(x)=const, the first three equations in system (1) represent the Tsodyks–Markram model, which explains the short-term synaptic plasticity phenomenon [1]. The model was enhanced with a fourth equation for y in [2], incorporating the influence of astrocytes via the concept of a tripartite synapse [3].

Model (1) illustrates a wide range of dynamic behavior including quiescence, regular tonic activity, and chaotic bursting activity. These behaviors correspond to various sets in the phase space, such as stable equilibrium states, limit cycles of period 1, limit cycles of any period n∈N, and chaotic attractors. Changing the I0 l parameter causes sets to bifurcate, resulting in the loss of stability of certain attractors and the emergence of others, leading to a shift in the dynamic regime. Therefore, in terms of dynamics, the conditions for bifurcation and the characteristics of the newly formed attractors are crucial.

In this presentation, we have obtained a series of numerical bifurcations in system (1) that correspond to the shift from tonic activity to burst activity, resulting in subsequent modifications to the bursts. Specifically, our findings demonstrate that an increase in the number of spikes per burst is determined by a period adding cascade where the aforementioned limit cycle of period n becomes unstable, allowing for a previously established stable cycle of period n+1 to occupy the position of the “main” attractor. This process culminates in the vanishing of the orbit with an endless period due to the saddle-node bifurcation of cycles, followed by the creation of a dependable cycle with a period of 1.

The main properties of the cascade were reproduced in our model one-dimensional piecewise-smooth map

z¯=1z6,                      for z < 0,μ1μ(z-1)6,for z > 0,

where z∈R1, μ is a bifurcational parameter. The map’s results suggest that an increase in current I0 i in model (1) may lead to the emergence and disappearance of quasi-strange attractors (quasi-attractors), implying chaotic behavior in connection with burst variation.

Full Text

We analyze a system of four differential equations that describe the dynamics of a neuron-glial network using the mean field approximation [1, 2]:

(τ=–E+α ln(1+e1/α(JuxE+I0)),

=(1–x)/τDuxE,(1)

=U(y)–u/τF+U(y)(1–u)E,

=–y/τy+βσ(x),

where E(t) is the average activity, x(t) is the fraction of available neurotransmitter released into the synaptic gap with a probability u(t); y(t) is the fraction of the gliatransmitter released by the astrocyte. Sigmoidal functions U(y) and σ(x) correspond to changes in the base probability level u(t) during the release of the gliatransmitter and activation of astrocytes during neurotransmitter release, respectively. The input inhibitory current corresponds to a bifurcation parameter with a negative value of I0 <0, while the remaining parameters have positive and fixed values. The rest of the parameters are positive and fixed. For a detailed description of the model, including information on the type of functions and parameter values, refer to works [1, 2].

For a constant value of U(x)=const, the first three equations in system (1) represent the Tsodyks–Markram model, which explains the short-term synaptic plasticity phenomenon [1]. The model was enhanced with a fourth equation for y in [2], incorporating the influence of astrocytes via the concept of a tripartite synapse [3].

Model (1) illustrates a wide range of dynamic behavior including quiescence, regular tonic activity, and chaotic bursting activity. These behaviors correspond to various sets in the phase space, such as stable equilibrium states, limit cycles of period 1, limit cycles of any period n∈N, and chaotic attractors. Changing the I0 l parameter causes sets to bifurcate, resulting in the loss of stability of certain attractors and the emergence of others, leading to a shift in the dynamic regime. Therefore, in terms of dynamics, the conditions for bifurcation and the characteristics of the newly formed attractors are crucial.

In this presentation, we have obtained a series of numerical bifurcations in system (1) that correspond to the shift from tonic activity to burst activity, resulting in subsequent modifications to the bursts. Specifically, our findings demonstrate that an increase in the number of spikes per burst is determined by a period adding cascade where the aforementioned limit cycle of period n becomes unstable, allowing for a previously established stable cycle of period n+1 to occupy the position of the “main” attractor. This process culminates in the vanishing of the orbit with an endless period due to the saddle-node bifurcation of cycles, followed by the creation of a dependable cycle with a period of 1.

The main properties of the cascade were reproduced in our model one-dimensional piecewise-smooth map

z¯=1z6,                      for z < 0,μ1μ(z-1)6,for z > 0,

where z∈R1, μ is a bifurcational parameter. The map’s results suggest that an increase in current I0 i in model (1) may lead to the emergence and disappearance of quasi-strange attractors (quasi-attractors), implying chaotic behavior in connection with burst variation.

ADDITIONAL INFORMATION

Funding sources. This study was supported by the Russian Scientific Foundation (grant No. 22-12-00348).

Competing interests. The author declares that he has no competing interests.

×

About the authors

N. V. Barabash

National Research Lobachevsky State University of Nizhny Novgorod; Volga State University of Water Transport

Author for correspondence.
Email: barabash@itmm.unn.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

References

  1. Cortes JM, Desroches M, Rodrigues S, et al. Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics. Proc Natl Acad Sci U S A. 2013;110(41):16610–16615. doi: 10.1073/pnas.1316071110
  2. Barabash N, Levanova T, Stasenko S. Rhythmogenesis in the mean field model of the neuron-glial network. Eur Phys J Spec Top. 2023;232:529–534. doi: 10.1140/epjs/s11734-023-00778-9
  3. Gordleeva SY, Stasenko SV, Semyanov AV, et al. Bi-directional astrocytic regulation of neuronal activity within a network. Front Comput Neurosci. 2012;6:92. doi: 10.3389/fncom.2012.00092

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».