Classification of dendritic spiking neurons’ shape through clustering and machine learning techniques

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A synapse is a specialized region between two adjacent neurons that allows information to be transmitted from one cell to another. The formation of these connections and transfer of signals via electrical impulses is a critical characteristic of neuronal cells. The synapse is formed by the axonal bouton on the axon side and the dendritic spine, a specialized outgrowth of the dendritic membrane, on the dendrite side. Dendritic spines exhibit diverse shapes and sizes, differing significantly across brain regions, cell categories, and animal species. Changes in dendritic spine morphology occur in neurodevelopmental and neurodegenerative ailments while also responding to external stimuli. Although deemed to facilitate synaptic plasticity, further investigation is essential for establishing the correlation between spine construction and its function. To address the issue in modern neurobiology of characterizing synapse morphology on 3D neuron images, the development of effective analytical methods is necessary. Our team has produced an open-source software solution for precise dendritic spine segmentation using 3D dendrite images. This software calculates the 10 most widely used 3D-adapted morphological features [1, 2] and enables classification and clustering of dendritic spine data sets to determine their shape. In addition to numerical features for describing the shape of a dendritic spine, researchers proposed using a histogram of chord lengths, known as the chord length distribution histogram (CLDH). This involves generating a set of random chords within the dendritic spine’s volume, connecting its outer boundaries and forming a histogram. By setting n=30 000, the probabilistic fluctuations of the histogram become insignificant. The derived metrics were then used for clustering and classifying the dataset.

Classification based on predetermined morphological groups is a frequently used approach for analyzing the morphology of dendritic spines. This method involves categorizing spines into established groups such as thin, mushroom, and stubby. Experimenters generally perform classification in a semi-automated manner, leading to considerable error. We have created a spine categorization tool using a machine learning algorithm. The tool classifies spines based on a consensus reached by eight experts who manually labeled the training dataset. The accuracy of this method surpasses 77% when using classical morphological features and is comparable to expert labeling. The implementation of this approach reduces classification bias and complexity.

Recent studies, including those using live microscopy in vitro and in vivo, indicate that dendritic spine shapes exhibit a continuum rather than distinct categories [3]. Therefore, it is essential to establish a dependable methodology for evaluating and examining the morphology of dendritic spines. We have created a clustering tool that establishes both the number of groups and their content based on data, rather than the experimenter’s discretion. This tool leverages the k-means and DBSCAN algorithms for its representation. Three clustering methods are presented to determine the number of clusters: the silhouette method, the elbow method, and a novel method, developed by the authors, based on the max class divergence criteria. The authors assume that cluster quality improves as clusters differ significantly in the number of mushroom/thin/stubby spine classes, as marked by experts. The benefit of this approach is that it considers the particular data type for clustering. Without this knowledge, assessing the quality of clustering is challenging. The use of the CLDH metric for clustering yielded a consistent and stable number of clusters (n=5) across all three methods described. These clusters contain dendritic spines that share similar shapes and have been validated by experts. In contrast, using classical metrics resulted in a variable cluster count ranging from n=4 to n=14. These findings suggest that the CLDH metric, with its complexity, provides enough information about synapse shape to enable precise clustering.

全文:

A synapse is a specialized region between two adjacent neurons that allows information to be transmitted from one cell to another. The formation of these connections and transfer of signals via electrical impulses is a critical characteristic of neuronal cells. The synapse is formed by the axonal bouton on the axon side and the dendritic spine, a specialized outgrowth of the dendritic membrane, on the dendrite side. Dendritic spines exhibit diverse shapes and sizes, differing significantly across brain regions, cell categories, and animal species. Changes in dendritic spine morphology occur in neurodevelopmental and neurodegenerative ailments while also responding to external stimuli. Although deemed to facilitate synaptic plasticity, further investigation is essential for establishing the correlation between spine construction and its function. To address the issue in modern neurobiology of characterizing synapse morphology on 3D neuron images, the development of effective analytical methods is necessary. Our team has produced an open-source software solution for precise dendritic spine segmentation using 3D dendrite images. This software calculates the 10 most widely used 3D-adapted morphological features [1, 2] and enables classification and clustering of dendritic spine data sets to determine their shape. In addition to numerical features for describing the shape of a dendritic spine, researchers proposed using a histogram of chord lengths, known as the chord length distribution histogram (CLDH). This involves generating a set of random chords within the dendritic spine’s volume, connecting its outer boundaries and forming a histogram. By setting n=30 000, the probabilistic fluctuations of the histogram become insignificant. The derived metrics were then used for clustering and classifying the dataset.

Classification based on predetermined morphological groups is a frequently used approach for analyzing the morphology of dendritic spines. This method involves categorizing spines into established groups such as thin, mushroom, and stubby. Experimenters generally perform classification in a semi-automated manner, leading to considerable error. We have created a spine categorization tool using a machine learning algorithm. The tool classifies spines based on a consensus reached by eight experts who manually labeled the training dataset. The accuracy of this method surpasses 77% when using classical morphological features and is comparable to expert labeling. The implementation of this approach reduces classification bias and complexity.

Recent studies, including those using live microscopy in vitro and in vivo, indicate that dendritic spine shapes exhibit a continuum rather than distinct categories [3]. Therefore, it is essential to establish a dependable methodology for evaluating and examining the morphology of dendritic spines. We have created a clustering tool that establishes both the number of groups and their content based on data, rather than the experimenter’s discretion. This tool leverages the k-means and DBSCAN algorithms for its representation. Three clustering methods are presented to determine the number of clusters: the silhouette method, the elbow method, and a novel method, developed by the authors, based on the max class divergence criteria. The authors assume that cluster quality improves as clusters differ significantly in the number of mushroom/thin/stubby spine classes, as marked by experts. The benefit of this approach is that it considers the particular data type for clustering. Without this knowledge, assessing the quality of clustering is challenging. The use of the CLDH metric for clustering yielded a consistent and stable number of clusters (n=5) across all three methods described. These clusters contain dendritic spines that share similar shapes and have been validated by experts. In contrast, using classical metrics resulted in a variable cluster count ranging from n=4 to n=14. These findings suggest that the CLDH metric, with its complexity, provides enough information about synapse shape to enable precise clustering.

ADDITIONAL INFORMATION

Authors’ contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding sources. The research was funded by the Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program “Priority 2030” (Agreement No. 075-15-2023-380 dated 20.02.2023).

Competing interests. The authors declare that they have no competing interests.

×

作者简介

P. Vasiliev

Peter the Great St. Petersburg Polytechnic University

Email: pchitskaya.ei@edu.spbstu.ru
俄罗斯联邦, Saint Petersburg

D. Smirnova

Peter the Great St. Petersburg Polytechnic University

Email: pchitskaya.ei@edu.spbstu.ru
俄罗斯联邦, Saint Petersburg

V. Chukanov

Peter the Great St. Petersburg Polytechnic University

Email: pchitskaya.ei@edu.spbstu.ru
俄罗斯联邦, Saint Petersburg

I. Bezprozvannyi

Peter the Great St. Petersburg Polytechnic University; UT Southwestern Medical Center at Dallas

Email: pchitskaya.ei@edu.spbstu.ru
俄罗斯联邦, Saint Petersburg; Dallas, USA

E. Pchitskaya

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: pchitskaya.ei@edu.spbstu.ru
俄罗斯联邦, Saint Petersburg

参考

  1. Kashiwagi Y, Higashi T, Obashi K, et al. Computational geometry analysis of dendritic spines by structured illumination microscopy. Nat Commun. 2019;10(1):1285. doi: 10.1038/s41467-019-09337-0
  2. Bokota G, Magnowska M, Kuśmierczyk T, et al. Computational approach to dendritic spine taxonomy and shape transition analysis. Front Comput Neurosci. 2016;10:140. doi: 10.3389/fncom.2016.00140
  3. Pchitskaya E, Bezprozvanny I. Dendritic spines shape analysis-classification or clusterization? Perspective. Front Synaptic Neurosci. 2020;12:31. doi: 10.3389/fnsyn.2020.00031

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».