Том 20, № 1 (2018)

Обложка

Весь выпуск

ТЕХНОЛОГИЯ

Переработка сурьмянисто-оловянных концентратов вакуумной дистилляцией

Королёв А.А., Мальцев Г.И., Тимофеев К.Л., Лобанов В.Г.

Аннотация

Объект исследования: статья посвящена вопросу создания экологически безопасной, технологически эффективной и экономически выгодной высокопроизводительной комплексной схемы по переработке свинецсодержащих промпродуктов и отходов, в частности, концентрата сурьмянисто-оловянного (КCО), образующегося при контрольной фильтрации в химико-металлургическом цехе, с получением товарных моноэлементных продуктов сурьмы и олова. Для анализа поведения поликомпонентного сплава при переработке, обоснования величин давления и температуры процесса, прогнозирования состава продуктов и степени разделения металлов при высокотемпературной возгонке рассчитывают равновесные фазовые диаграммы VLE (vapor liquid equilibrium), в частности, температура–состав «Т–х». Цель работы: исследование влияния температуры и давления в системе на полноту извлечения и степень разделения сурьмы и олова из состава КСО. Используемые методы и подходы: при построении равновесных фазовых диаграмм VLE расчет коэффициентов активности компонентов Sb-Sn сплава выполнен с помощью объемной модели молекулярного взаимодействия мolecular interaction volume model (MIVM). Новизна: получена новая информация о влиянии температуры и глубины вакуума на степень возгонки и разделения металлов из SbSn композиций различного состава. Основные результаты: в интервале температур 823…1073 К рассчитаны давления насыщенного пара (Па) для Sn (0.00332.–81.193).10–6 и Sb (3.954–273.664). Высокие значения р*Sb/р*Sn = (118.976…0.337) × 107 и коэффициента разделения logβSb = 6.262…9.435 предполагают теоретическую возможность для разделения указанных металлов вакуумной дистилляцией, при этом сурьма концентрируется в составе возгонов (βSb > 1), а олово – в кубовом остатке. Содержание олова в газовой фазе, мольная доля (м.д.): уSn = (0.002…9498.3) × 10–4, возрастает в интервале температуры 921…1878 К, давления 1,33…133 Па и количества металла (м.д.) в сплаве хSn = 0.9…0.9999. Согласно MIVM определены значения gsb = 0.439–0.992 и gsn = 0.433…0.992 для Sb-Sn сплава состава 0.1…0.9 в исследованном температурном диапазоне. Практическая значимость: равновесные диаграммы VLE используют на предварительных этапах проектирования оптимальных технологических режимов промышленных установок для вакуумной дистилляции, а также для обоснованного выбора температуры и давления возгонки с целью получении Sn- и Sb-содержащих продуктов заданного состава. Предложена принципиальная схема переработки КСО вакуумной дистилляцией.
Обработка металлов (технология • оборудование • инструменты). 2018;20(1):6-21
pages 6-21 views

Расчетно-экспериментальная оценка технологических деформаций при «мягких» режимах токарной обработки тонкостенных деталей

Еремейкин П.А., Жаргалова А.Д., Гаврюшин С.С.

Аннотация

Введение. В авиационной, космической, энергомашиностроительной и других отраслях промышленности широко используются относительно податливые изделия в первую очередь в форме тонкостенных оболочек. Для подобных деталей актуальна задача минимизации характерных технологических деформаций, сопровождающих процесс обработки и связанных с искажением формы заготовки. С целью минимизации технологических деформаций и рисков используется специализированная дополнительная оснастка, что существенно повышает трудоёмкость изготовления изделий. В работе рассматривается альтернативный способ снижения технологических деформаций посредством использования «мягких» режимов обработки, подразумевающий выбор рациональных параметров резания и условий закрепления на основе результатов численного моделирования. Предложенный метод может быть востребован для этапа проектирования технологических процессов и отвечает современным тенденциям цифрового производства в рамках Национальной технологической инициативы. Для успешного внедрения предлагаемого подхода была разработана интегрированная система поддержки принятия решений о выборе режимов механической обработки тонкостенных деталей, которая позволяет технологам оперативно оценивать применимость выбранных режимов резания с учетом податливости заготовки. Цель работы: экспериментальная проверка работоспособности разработанной системы и метода «мягких» режимов обработки. В работе рассматривается случай черновой токарной обработки полой цилиндрической заготовки, закрепленной в трехкулачковом патроне. Методы исследования: эксперимент проведен на специально подготовленном стенде, в состав которого входят: токарный станок, трехкулачковый патрон, штатив и измерительная головка. Измерения отклонений проводятся в заранее определенных точках на поверхности заготовки с применением измерительной головки. Результаты и обсуждение. Результаты эксперимента представлены в графическом виде. На графиках отклонений показаны теоретические и экспериментальные кривые для различных сечений заготовки. Сравнительный анализ результатов экспериментальных исследований с расчетными данными, полученными с помощью численного моделирования технологического процесса, позволяет сделать вывод о целесообразности использования «мягких» режимов при токарной обработке податливых деталей.
Обработка металлов (технология • оборудование • инструменты). 2018;20(1):22-32
pages 22-32 views

ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ

Повышение работоспособности охватывающей фрезы с режущими элементами из композита при нарезании трапецеидальной резьбы с элементами разрыва

Кудряшов Е.А., Каменева Т.Е.

Аннотация

Цель: повышение работоспособности охватывающей фрезы благодаря разработанному способу настройки резцов на расчетные значения углов безударного резания, вследствие применения которого расширяются технологические возможности хрупкого инструментального материала композит при нарезании трапецеидальной резьбы с элементами разрыва. В работе проведен анализ физико-механических характеристик инструментальных материалов группы композитов. Отмечается, что основной причиной низкой работоспособности режущих элементов охватывающей фрезы является скалывание их вершин и режущих кромок при врезании (выходе) инструмента в заготовку и прохождении через элементы разрыва резьбы образованными второстепенными конструктивными элементами, находящимися на ее поверхности. Методы: экспериментальные исследования проведены на токарно-винторезном станке с установкой на суппорте специального приспособления для нарезания резьбы, оснащенного сменной охватывающей фрезой, имеющей комплект резьбовых резцов, режущая часть которых выполнена из инструментального материала композит. Качество обработанной поверхности резьбы и точность исполнения контролировались оптическим методом с использованием стандартных и специальных средств измерений. Результаты и обсуждение: приведены рациональные значения геометрии режущего элемента и режимов нарезания трапецеидальной резьбы охватывающей фрезой, оснащенной комплектом режущих элементов из инструментального материала композит, настроенной на врезание в обрабатываемую заготовку с элементами разрыва таким образом, чтобы встреча и последующее формообразование резьбы происходили в области передней поверхности режущего элемента максимально удаленной как от его вершины, так и режущих кромок. Использование способа настройки, защищенного патентом РФ, позволило повысить работоспособность охватывающей фрезы и расширить область применения инструментального материала композит при прерывистом резании.
Обработка металлов (технология • оборудование • инструменты). 2018;20(1):33-43
pages 33-43 views

Особенности циклограммирования машины с учетом взаимодействия звеньев механизмов с упорами

Подгорный Ю.И., Максимчук О.В., Кириллов А.В., Скиба В.Ю.

Аннотация

Введение. Рассматриваются вопросы циклограммирования технологической машины с учётом взаимодействия звеньев механизмов с упорами. Анализ научной литературы указывает на то, что в настоящее время вопросы циклограммирования сложных машин с учетом упругодиссипативных характеристик механизмов нуждаются в дальнейшей разработке, так как при оптимизации циклограмм используются упрощённые динамические модели, не учитывающие податливости ведомых звеньев механизмов. Актуальность исследования обусловлена тем, что существующие динамические модели не могут быть использованы для расчета колебаний, возбуждаемых при ударах рабочих органов об ограничительные упоры, при входе в контакт с упругими элементами. Цель работы: совершенствование методики синтеза циклограммы технологической машины, позволяющей повысить ее производительность. В работе исследована циклограмма технологической машины, представленная в виде математических моделей взаимодействия механизмов с использованием связных ориентированных графов. В качестве объекта исследования выбран станок ткацкий бесчелночный СТБ – сложная технологическая машина с большим числом исполнительных механизмов, движения которых тесно взаимосвязаны. При решении оптимизационной задачи необходимо увеличить время лимитирующей операции путём сокращения времени выполнения технологических операций в группах механизмов, при этом задача для каждой группы формулируется математически как задача оптимизации на сетевом графике. При проведении исследований рассмотрен механизм подъёмника прокладчиков утка ткацкого станка типа СТБ. Метод исследования: оптимизация цикловой диаграммы с использованием динамических моделей механизмов. Результаты и обсуждение. Предложены динамические модели механизмов, учитывающие взаимодействие ведомых звеньев с ограничительными упорами. Проведен расчет динамических погрешностей законов движения кулачкового механизма, работающего с ударом об упор, при скорости вращения главного вала n = 280…420 об/мин. Исследованы колебания механизма на собственной частоте после контакта с упором. Сформулирована ограничительная часть оптимизационной задачи циклограммирования с учетом колебаний исполнительного звена и ударного взаимодействия его с ограничительным упором.
Обработка металлов (технология • оборудование • инструменты). 2018;20(1):44-54
pages 44-54 views

МАТЕРИАЛОВЕДЕНИЕ

Моделирование теплового и структурного состояний полого катода вакуумного плазмотрона

Дутова О.С., Шишкин А.В., Чередниченко В.С.

Аннотация

Введение. Дуговые плазмотроны широко используются в различных областях науки и техники. Ресурс непрерывной работы электродов определяет эффективность плазмотрона и является одной из его важнейших технологических характеристик. Теоретическое и экспериментальное исследование физико-механических процессов в материале катода направлено на повышение длительности его работы и является актуальной задачей. Цель работы: создание физико-математических моделей и численное исследование тепловых и рекристаллизационных процессов, происходящих в полом катоде вакуумного плазмотрона под воздействием электрической дуги. Методы исследования. Для исследования температурного поля катода при воздействии электрической дуги проводится совместное численное решение дифференциального уравнения Фурье с внутренним источником тепла, уравнения Лапласа для электрического потенциала и уравнения закона Ома. При работе плазмотрона в катоде формируются и растут зародыши новых зёрен. Наиболее существенными для рекристаллизационных процессов являются три взаимосвязанных между собой явления – это нагрев материала, зарождение и рост новых зерен. На основе данных о температурном поле и параметрах активационных моделей процессов зарождения и роста зерен в вольфраме получено распределение размера кристаллического зерна по объему катода. Предложенные математические модели позволяют проводить численное моделирование различных режимов работы полого катода, оценивать изменение структуры материала в процессе его нагрева и могут быть использованы для исследования и повышения эксплуатационных характеристик полых катодов вакуумных плазмотронов.  Результаты и обсуждение. Полученные решения показали, что нагрев катода характеризуется большими скоростями и быстрым выходом на стационарный режим. Нужно отметить резкое изменение температуры по длине катода в окрестности активной зоны (поверхности нагрева). Характерным признаком распределения температуры являются значительные осевые и радиальные градиенты температуры, которые могут приводить к большим термическим напряжениям в катоде. Результаты расчёта показали, что размер зерна увеличивается с уменьшением перегрева над температурой начала рекристаллизации. Это связано с тем, что с ростом перегрева скорость образования новых зерен опережает скорость их роста, и зерно начинает уменьшаться в размере. Для исследованных значений плотности потока среднее по длине катода значение размера первично рекристаллизованного зерна находится в интервале 3,7…14 мкм. Время, необходимое для получения монокристаллической стенки полого катода в результате собирательной и/или вторичной рекристаллизации, составляет 1…32 ч. В результате полная рекристаллизация зерна в поперечном сечении вольфрамового катода может происходить за один цикл работы плазмотрона. Это означает, что электрофизические и тепловые характеристики катода существенно меняются в ходе его работы. Размер зерна также оказывает существенное влияние на сопротивление разрушающему воздействию термических напряжений.
Обработка металлов (технология • оборудование • инструменты). 2018;20(1):55-68
pages 55-68 views

Модель формирования состава многослойного покрытия при осаждении из плазмы

Шанин С.А., Ефременков Е.А.

Аннотация

Введение. Современная техника эксплуатируется, как правило, в условиях высоких механических нагрузок и повышенных температур, что, в свою очередь, приводит к необходимости создания новых материалов, имеющих повышенные физико-механические свойства. Для повышения эксплуатационных свойств деталей машин все большее распространение получают методы магнетронного и вакуумно-дугового нанесения покрытий из тугоплавких материалов. Математическое моделирование является хорошей альтернативой подробных экспериментальных исследований, позволяющих изучить отдельные явления на разных стадиях роста покрытия и дать прогноз относительно изменения состава и макроскопических свойств покрытия при варьировании технологических условий. Это, в свою очередь, позволяет оптимизировать технологический процесс. Цель работы: определение степени влияния перекрестных эффектов, а также взаимного влияния процессов переноса на формирование состава многослойного покрытия при осаждении из плазмы на подложку. В работе исследованы связанная математическая модель формирования состава многослойного покрытия при осаждении из плазмы титана, хрома и азота. В модели учитываются влияние градиента напряжений на потоки тепла и масс, термодиффузия и диффузионная теплопроводность. Методами исследования являются вычислительные методы. Результаты и обсуждение. Теоретически исследовано влияние перекрестных эффектов, а также взаимного влияния процессов переноса в формировании состава многослойного покрытия, осаждаемого из плазмы. Показано, что состав плазмы влияет на эволюцию состава покрытия. Определено, что учет переноса массы и тепла за счет градиента напряжений оказывает ощутимое влияние на состав покрытия. Обнаружено, что для выбранных систем термодиффузия и диффузионная теплопроводность оказывают влияние на распределение концентраций только на начальной стадии процесса осаждения покрытия.
Обработка металлов (технология • оборудование • инструменты). 2018;20(1):69-79
pages 69-79 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».