The Effect of the Structural State of AISI 321 Stainless Steel on Surface Quality During Turning

Cover Page

Cite item

Full Text

Abstract

Introduction. The development and continuous improvement of methods, technologies and equipment for the implementation of severe plastic deformation (SPD) helps to reduce the cost of producing ultrafine-grained (UFG) materials with improved physical and mechanical properties. Thereby, such materials become more accessible for use in full production of various objects. Cutting, and in particular turning, is the most common method of manufacturing products. However, at the moment there is a lack of information about the influence of the structural state of UFG materials on the qualitative characteristics of the surface after turning. The purpose of the work: to study the effect of structural conditions in AISI 321 stainless steel on the quality of its machining during turning. In this work, samples of AISI 321 stainless steel in the state as received and after structure formation are investigated using modern metal-cutting tools and equipment, as well as recommended cutting conditions. The methods of investigation are mechanical tests for compression and tension, transmission electron microscopy, optical metallography, laser scanning microscopy. Results and discussion. Based on the obtained experimental data, it can be concluded that SPD is an effective way to improve the quality of surface machining when turning AISI 321 stainless steel. For example, structure formation using SPD significantly reduces the roughness parameters of Sa and Sz. For better cutting quality and strength, rolling after ABC pressing is more efficient. The obtained results indicate a great potential for using of products from bulk UFG materials in industry due to the possibility of combining high mechanical properties and quality of dimensional machining. The data obtained can be applied in the design of technological processes for the machining of AISI 321 stainless steel with an ultrafine-grained structure under conditions of full production engineering.

About the authors

S. N. Nikolay

Email: shamarin.nik@gmail.com
Institute of Strenght Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, shamarin.nik@gmail.com

F. V. Andrey

Email: Andrey.V.Filippov@yandex.ru
Doctor of Philosophy, Institute of Strenght Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, Andrey.V.Filippov@yandex.ru

S. Yu. Tarasov

Email: tsy@ispms.ru
D.Sc. (Engineering), Institute of Strenght Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation; National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, tsy@ispms.ru

P. A. Oleg

Email: poa-3@mail.ru
National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, poa-3@mail.ru

U. R. Veronika

Email: filaret_2012@mail.ru
Institute of Strenght Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, filaret_2012@mail.ru

References

  1. Shintani T., Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction // Acta Materialia. – 2011. – Vol. 59. – P. 4314–4322. – doi: 10.1016/j.actamat.2011.03.055.
  2. Microstructure evolution in nano/submicron grained AISI 301LN stainless steel / S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira // Materials Science and Engineering: A. – 2010. – Vol. 527. – P. 1986–1996. – doi: 10.1016/j.msea.2009.11.037.
  3. Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment / G.S. Sun, L.X. Du, J. Hu, H. Xie, H.Y. Wu, R.D.K. Misra // Materials Characterization. – 2015. – Vol. 110. – P. 228–235. – doi: 10.1016/j.matchar.2015.11.001.
  4. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel / A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan // Journal of Materials Processing Technology. – 2010. – Vol. 210, N 8. – P. 1017–1022. – doi: 10.1016/j.jmatprotec.2010.02.010.
  5. Ning J. Inverse determination of Johnson – Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search // The International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 99. – P. 1131-1140. – doi: 10.1007/s00170-018-2508-6.
  6. Chertovskikh V. Cuttability of UFG titanium BT1-0 obtained by ECAE // Russian Engineering Research. – 2007. – Vol. 27. – P. 260–264. – doi: 10.3103/S1068798X0705005X.
  7. Huang Y., Morehead M. Study of machining-induced microstructure variations of nanostructured/ultrafine-grained copper using XRD // Journal of Engineering Materials and Technology. – 2011. – Vol. 133. – P. 021007. – doi: 10.1115/1.4003105.
  8. Surface integrity analysis when milling ultrafine-grained steels / A.R. Rodrigues, O. Balancin, J. Gallego, C.L.F. De Assis, H. Matsumoto, F.B. De Oliveira, S.R.D.S. Moreira, O.V. Da Silva Neto // Materials Research. – 2012. – Vol. 15. – P. 125–130. – doi: 10.1590/S1516-14392011005000094.
  9. Assis C.L.F. de, Jasinevicius R.G., Rodrigues A.R. Micro end-milling of channels using ultrafine-grained low-carbon steel // International Journal of Advanced Manufacturing Technology. – 2015. – Vol. 77. – P. 1155–1165. – doi: 10.1007/s00170-014-6503-2.
  10. Machining characteristics of fine grained AZ91 Mg alloy processed by friction stir processing / G.V.V. Surya Kiran, K.H. Krishna, S. Sameer, M. Bhargavi, B.S. Kumar, G.M. Rao, Y. Naidubabu, R. Dumpala, B.R. Sunil // Transactions of Nonferrous Metals Society of China. – 2017. – Vol. 27. – P. 804–811. – doi: 10.1016/S1003-6326(17)60092-X.
  11. Mechanical properties and machinability of 6061 aluminum alloy produced by equal-channel angular pressing / Y. Bayat Asl, M. Meratian, A. Emamikhah, R. Mokhtari Homami, A. Abbasi // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2015. – Vol. 229. – P. 1302–1313. – doi: 10.1177/0954405414535921.
  12. Surface roughness evaluation after machining wear resistant hard coats / K. Monkova, P. Monka, J. Cesanek, J. Matejka, V. Duchek // MATEC Web of Conferences. – 2017. – Vol. 137. – P. 03008. – doi: 10.1051/matecconf/201713703008.
  13. Study of a tap failure at the internal threads machining / P. Monka, K. Monkova, V. Modrak, S. Hric, P. Pastucha // Engineering Failure Analysis. – 2019. – Vol. 100. – P. 25–36. – doi: 10.1016/j.engfailanal.2019.02.035.
  14. Surface machining after deposition of wear resistant hard coats by high velocity oxygen fuel technology / K. Monkova, P. Monka, J. Matejka, M. Novak, J. Cesanek, V. Duchek, M. Urban // Manufacturing Technology. – 2017. – Vol. 17 (6). – P. 919–925.
  15. Comparative study of chip formation in orthogonal and oblique slow-rate machining of EN 16MnCr5 steel / K. Monkova, P. Monka, A. Sekerakova, L. Hruzik, A. Burecek, M. Urban // Metals. – 2019. – Vol. 9 (6). – P. 698. – doi: 10.3390/met9060698.
  16. Филиппов А.В., Филиппова Е.О. Объемные ультрамелкозернистые материалы от структурообразования к формообразованию // СТИН. – 2018. – № 1. – С. 6–10.
  17. Оценка 2D параметров шероховатости и волнистости поверхности после обработки резанием сплава АМг2 с ультрамелкозернистой структурой. Ч. 1. Точение / А.В. Филиппов, С.Ю. Тарасов, Н.Н. Шамарин, О.А. Подгорных, Е.О. Филиппова // СТИН. – 2018. – № 7. – С. 20–24.
  18. Оценка 2D параметров шероховатости и волнистости поверхности после обработки резанием сплава АМг2 с ультрамелкозернистой структурой. Ч. 2. Фрезерование / А.В. Филиппов, С.Ю. Тарасов, О.А. Подгорных, Н.Н. Шамарин, Е.О. Филиппова, А.В. Воронцов // СТИН. – 2018. – № 12. – С. 32–35.
  19. Влияние объемной интенсивной пластической деформации на шероховатость фрезерованной поверхности коррозионно-стойкой стали 12Х18Н10Т / А.В. Филиппов, С.Ю. Тарасов, О.А. Подгорных, Н.Н. Шамарин, С.В. Фортуна, Е.О. Филиппова, А.В. Воронцов // СТИН. – 2019. – № 6. – С. 35–38.
  20. Morehead M., Huang Y., Hartwig K.T. Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools // International Journal of Machine Tools and Manufacture. – 2007. – Vol. 47, iss. 2. – P. 286–293. – doi: 10.1016/j.ijmachtools.2006.03.014.
  21. Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction / J. Ning, V. Nguyen, Y. Huang, K.T. Hartwig, S.Y. Liang // Bio-Design and Manufacturing. – 2019. – Vol. 2, N 3. – P. 153–160. – doi: 10.1007/s42242-019-00044-9.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».