No 2 (2024)

Cover Page

Full Issue

Surveys

State-of-the-Art and Development Trends of Geographic Information Systems

Alchinov A.I., Gorokhovsky I.N., Akif’eva E.V.

Abstract

When managing complex organizational and technical systems, decision support remains relevant due to the growing role and capabilities of geographic information systems (GISs). This survey is devoted to GISs. We analyze the level of their representation in the world and Russian environment, the peculiarities of their development, and the main related results obtained at the Trapeznikov Institute of Control Sciences, the Russian Academy of Sciences. We highlight the technologies and functionality of GISs that are of high demand in the field of management. A GIS is interpreted as a mechanism to process and support managerial decisions. The main foreign and Russian GISs are overviewed, including their main characteristics, applications, and development trends. We describe geoinformation technologies and algorithms implemented in full-fledged GISs and also those providing platforms for creating various-purpose GISs.
Control Sciences. 2024;(2):3-22
pages 3-22 views

Mathematical Problems of Control

An Optimal Allocation Algorithm for Reentrant Resources on Network Graphs

Kosorukov O.A., Lemtyuzhnikova D.V.

Abstract

This paper considers the problem of allocating reentrant resources when performing a set of interdependent works that are represented by a network graph. By assumption, the work completion time linearly depends on the resource amount used. We justify a solution algorithm in the case of a set of works with a predetermined sequence of events in the network graph. Also, we propose an algorithm for reducing the general problem to an auxiliary one with ordered event times and an algorithm for constructing an optimal solution of the original problem. The convergence of this algorithm is ensured by finite iterations at each stage. The overall computational complexity of the algorithm can be estimated as O(n2), where n denotes the number of vertices in the original network graph. It seems promising to apply this algorithm for planning the sets of interdependent works using reentrant resources.
Control Sciences. 2024;(2):23-29
pages 23-29 views

Control in Social and Economic Systems

Structural Shifts and the Participation of Russian Industries in Global Value Chains: An Analysis Using World Input-Output Tables

Varnavskii V.G.

Abstract

Russia actively participates in the international division of labor, global trade, and cross-border value chains. Foreign trade represents a significant share of its gross domestic product. In recent years, the Russian government has been strengthening its public policy to carry out infrastructure and production projects as well as use tax, credit, budgetary, and other policy measures to stimulate economic growth. Hence, there is a growing demand for economic research using mathematical models for managing the economy and industries based on world input-output models with foreign trade blocks highlighted therein. This paper introduces into scientific circulation the world input-output tables created in recent decades, including their brief overview. We propose a model for the Russian economy based on Leontief’s Input–Output tables in which each industry’s supplies of products to other industries are decomposed into domestic output and import flows. The model is verified using an example of the mining, manufacturing, and transport complexes of Russia. Their output dynamics and structural shifts are estimated for the period 2000–2018 considering the foreign trade component. Special attention is paid to the participation of these complexes in Global Value Chains (GVCs). We present and analyze formulas for determining the participation of industries in GVCs. According to the calculations, Russia’s involvement in mining, manufacturing, and transport GVCs is comparable with other countries having large territories, mineral reserves, and transport communications, such as the United States and Australia. Some promising lines to improve the model are described.
Control Sciences. 2024;(2):30-41
pages 30-41 views

Integrated Climate Change Impact Assessment and an Adaptation Financing Mechanism for Infrastructure Facilities

Vega A.Y., Enaleev A.K.

Abstract

This paper addresses the planning and management aspects of adaptation measures for mitigating the adverse impacts of climate change on economic infrastructure facilities. We navigate through the complexities of risk assessment in the face of climate change uncertainties. The integrated assessment of infrastructure facilities using climate forecast maps and facilities vulnerability maps is structurally described. An approach is proposed to form a portfolio of infrastructure facilities. They are selected in two stages as follows. In the first stage, a preliminary portfolio of facilities is formed using integrated assessment. In the second stage, investment resources are sequentially allocated to preliminary portfolio’s facilities in descending order of their specific risk assessment. Due to a limited investment fund, the second stage yields the final portfolio of facilities for implementing adaptation measures. We present an incentive mechanism for adaptation measures under the Principal’s incomplete information. This mechanism is optimal and provides reliable data from the facilities to the Principal (possesses strategy-proofness).
Control Sciences. 2024;(2):42-59
pages 42-59 views

Forecasting the Impact of Control Actions on the Sectoral Structure Dynamics of a Labor Market Based on the Balance Mathematical Model

Nevecherya A.P., Popova E.V.

Abstract

This paper proposes an approach to considering control actions on the sectoral structure dynamics of a labor market when forecasting sectoral employment indicators. The forecasting scheme is based on the balance mathematical model of inter-sectoral labor resource movements. In the forecasting scheme considered previously, the trends of indicators characterizing inter-sectoral labor force mobility were determined independently of each other. In what follows, this forecasting scheme is modified by introducing a grouping method for the indicators of inter-sectoral labor resource movements and a criterion for determining the general trend of indicators within each group. The modified forecasting scheme is applied to calculate sectoral employment forecasts for the labor market of the Russian Federation in 2011–2016, and the forecasts are compared with the previous results. The expected employment rate is forecasted for the end of 2022 using sectoral employment and unemployment data for 2017–2021 according to the second edition of the All-Russian Classifier of Types of Economic Activity (OKVED). A method for determining the result of control actions is presented on an example of the Russian Federation labor market in 2017–2022: changes in the sectoral employment forecasts are demonstrated in the case of considering control actions on the agricultural and industrial sectors of the market.
Control Sciences. 2024;(2):60-73
pages 60-73 views

Control of Technical Systems and Industrial Processes

ASSESSING THE EFFECTIVENESS OF INTELLECTUAL TECHNOLOGIES FOR IDENTIFYING hazardous COMBINATIONS OF EVENTS IN CIVIL AVIATION flight SAFETY MANAGEMENT

Varyukhina E.V., Klochkov V.V.

Abstract

This paper proposes an approach to assessing the effectiveness of intellectual technologies (artificial intelligence and machine learning) for identifying hazardous combinations of events in air transport systems. The influence of such technologies on flight safety and the aircraft’s total cost of ownership is formalized. A simple model is developed to assess the effectiveness of implementing intellectual technologies when identifying a single hidden problem. This model is qualitatively analyzed to reveal the role of its parameters (the size and flight hours of the aircraft fleet, the duration and cost of systemic problem elimination, and damage from events of different severity). In addition, we model the identification and elimination of hazardous combinations of events during the life cycle of air transport systems considering the learning effect. According to this effect, the intensity of hidden systemic problems decreases over time with the accumulation of experience in the operation of an air transport system and the gradual elimination of such problems. The relative acceleration in the identification of hidden patterns is the main indicator that characterizes intellectual technologies for identifying such patterns in incidents. Both types of models can be used to estimate the dependence of expected losses on this indicator. It is also important to consider the dependences of model calculation results on other parameters of the models, including the duration and cost of eliminating the identified problems, damage from various events, and the size and flight hours of the aircraft fleet. As is demonstrated below, intellectual technologies are most effective in an air transport system with a small aircraft fleet and a low intensity of aircraft operation.
Control Sciences. 2024;(2):74-82
pages 74-82 views

Control of Moving Objects and Navigation

Modeling of the Target’s Interception Delay in an ADT Game with One or Two Defenders

Galyaev A.A., Samokhin A.S., Samokhina M.A.

Abstract

This paper considers the Attacker–Defender–Target (ADT) problem with one or two defenders in a 2D statement. By assumption, the target and defenders move in a straight line with a constant velocity whereas the attacker moves along a catch-up trajectory with an unbounded radius of curvature. Compared to the target’s velocity, the defenders move slower whereas the attacker faster. The essence of using defenders is that the attacker first intercepts them and only then switches to pursuing the primary target. As a result, the time of intercepting the primary target increases, and the target may become unattainable for the attacker due to a limited fuel capacity. The angles and times of launching the defenders are optimized, including the case where both defenders are launched on the same side of the target. Different models of the homing system of an autonomous attacking vehicle are studied: moving to the center of mass of all pursued objects and moving to the nearest target by distance or by angular range. Numerical simulations are carried out, showing the importance of choosing the angle of launch of the defenders and the reasonability of using the second defender. Also, scenarios are obtained in which using defenders makes the primary target unattainable for the attacker.
Control Sciences. 2024;(2):83-94
pages 83-94 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».