Smooth solutions of the eikonal equation and the behaviour of local minima of the distance function

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study smooth solutions of the eikonal equation. To do this, we investigate the problem ofgeometric-topological properties of the singularities of the distance function and the regular set. Weestablish a connection between the caustic and domains where the number of local minima ofthe distance function is constant. We pose a number of problems about reflecting surfaces bringing light to a singlepoint (a focus) and introduce the notions of generalized ellipsoids and paraboloids.

作者简介

Igor' Tsar'kov

Lomonosov Moscow State University

Email: tsar@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor

参考

  1. M. Борн, Э. Вольф, Основы оптики, Наука, М., 1970, 856 с.
  2. Дж. Брус, П. Джиблин, Кривые и особенности. Геометрическое введение в теорию особенностей, Современная математика: Вводные курсы, Мир, М., 1988, 264 с.
  3. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, т. 3, Излучение, волны, кванты, 3-е изд., Мир, М., 1976, 240 с.
  4. Ю. А. Кравцов, Ю. И. Орлов, Геометрическая оптика неоднородных сред, Наука, М., 1980, 304 с.
  5. В. И. Арнольд, Особенности каустик и волновых фронтов, Фазис, М., 1996, x+334 с.
  6. С. Н. Кружков, “Обобщенные решения уравнений Гамильтона–Якоби типа эйконала. I. Постановка задач, теоремы существования, единственности и устойчивости, некоторые свойства решений”, Матем. сб., 98(140):3(11) (1975), 450–493
  7. А. Р. Алимов, И. Г. Царьков, “Связность и солнечность в задачах наилучшего и почти наилучшего приближения”, УМН, 71:1(427) (2016), 3–84
  8. В. С. Балаганский, Л. П. Власов, “Проблема выпуклости чебышeвских множеств”, УМН, 51:6(312) (1996), 125–188
  9. А. Р. Алимов, И. Г. Царьков, “Связность и другие геометрические свойства солнц и чебышевских множеств”, Фундамент. и прикл. матем., 19:4 (2014), 21–91
  10. В. С. Балаганский, “Необходимые условия дифференцируемости функции расстояния”, Матем. заметки, 72:6 (2002), 815–820
  11. I. G. Tsar'kov, “Properties of $C^1$-solution to the eikonal equation”, Lobachevskii J. Math., 38:4 (2017), 763–766
  12. I. G. Tsar'kov, “Singular sets of surfaces”, Russ. J. Math. Phys., 24:2 (2017), 263–271
  13. И. Г. Царьков, “Некоторые приложения геометрической теории приближения”, Дифференциальные уравнения. Математический анализ, Итоги науки и техн. Сер. Соврем. матем. и ее прил. Темат. обз., 143, ВИНИТИ РАН, М., 2017, 63–80
  14. В. Гуревич, Г. Волмэн, Теория размерности, ИЛ, М., 1948, 232 с.
  15. S. Eilenberg, D. Montgomery, “Fixed point theorems for multi-valued transformations”, Amer. J. Math., 68:2 (1946), 214–222

补充文件

附件文件
动作
1. JATS XML

版权所有 © Tsar'kov I.G., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».