Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
Peer-review bimonthly mathematical journal
Editor-in-chief
- Dmitri O. Orlov, Member of the Russian Academy of Sciences, Doctor of Physico-Mathematical Sciences
Publisher
- Steklov Mathematical Institute of RAS
Founders
- Russian Academy of Sciences
- Steklov Mathematical Institute of RAS
About
Frequency
The journal is published bimonthly.
Indexation
- Scopus
- Web of Science
- Russian Science Citation Index
- Math-Net.Ru
- MathSciNet
- zbMATH
- Google Scholar
- Ulrich's Periodical Directory
- CrossRef
Scope
The journal publishes only original research papers containing full results in the author's field of study. Particular attention is paid to algebra, mathematical logic, number theory, mathematical analysis, geometry, topology, and differential equations.
Main webpage: https://www.mathnet.ru/eng/im
Access to the English version journal dating from the first translation volume is available at https://www.mathnet.ru/eng/im.
Current Issue



Vol 88, No 6 (2024)
Articles
Schauder's fixed point theorem and Pontryagin maximum principle
Abstract



Chebyshev sets composed of a union of subspaces in asymmetric normed spaces
Abstract



Uniqueness of solutions of generalized convolution equations on the hyperbolic plane and the group $\mathrm{PSL}(2,\mathbb{R})$
Abstract



Cone criterion on an infinite-dimensional torus
Abstract



On low-dimensional bases of natural fibrations for compact homogeneous spaces
Abstract



Superposition of layers of the cubic lattice
Abstract



Residually linear abstract groupoids
Abstract
We introduce the notion of residually linear groupoids. We characterize this class in analogy with the group-theoretic setting. Various properties are proved and a relationship with residual finiteness is investigated. From a categorical point of view, our approach extends some well-known results in the theory of discrete groups, due mainly to Mal'cev and Menal. Finally, as an application, we show that the character groupoid of the Hopf algebroid of representative functions of a transitive groupoid is always residually linear.Bibliography: 24 titles.



On the Poincaré problem of the third integral of the equations of rotation of a heavy asymmetric top
Abstract



On $T$-maps and ideals of antiderivatives of hypersurface singularities
Abstract
Mather–Yau's theorem leads to an extensive study about moduli algebras of isolated hypersurface singularities. In this paper, the Tjurina ideal is generalized as $T$-principal ideals of certain $T$-maps for Noetherian algebras. Moreover, we introduce the ideal of antiderivatives of a $T$-map, which creates many new invariants. Firstly, we compute two new invariants associated with ideals of antiderivatives for ADE singularities and conjecture a general pattern of polynomial growth of these invariants.Secondly, the language of $T$-maps is applied to generalize the well-known theorem that the Milnor number of a semi quasi-homogeneous singularity is equal to that of its principal part. Finally, we use the $T$- fullness and $T$-dependence conditions to determine whether an ideal is a $T$-principal ideal and provide a constructive way of giving a generator of a $T$-principal ideal. As a result, the problem about reconstruction of a hypersurface singularitiy from its generalized moduli algebras is solved. It generalizes the results of Rodrigues in the cases of the $0$th and $1$st moduli algebra, which inspired our solution.Bibliography: 24 titles.


