$1$-nodal Fano threefolds with Picard number $1$
- Autores: Kuznetsov A.G.1,2, Prokhorov Y.G.1,2
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics", Moscow, Russia
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 80-178
- Seção: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/303960
- DOI: https://doi.org/10.4213/im9585
- ID: 303960
Citar
Resumo
We classify all $1$-nodal degenerations of smooth Fano threefolds with Picard number $1$ (both non-factorial and factorial) and describe their geometry. In particular, we describe a relation between such degenerations and smooth Fano threefolds of higher Picard rank and with unprojections of complete intersection varieties.
Palavras-chave
Sobre autores
Alexander Kuznetsov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics", Moscow, Russia
Autor responsável pela correspondência
Email: akuznet@mi-ras.ru
Doctor of physico-mathematical sciences, no status
Yuri Prokhorov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics", Moscow, Russia
Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Bibliografia
- M. Abe, M. Furushima, “On non-normal del Pezzo surfaces”, Math. Nachr., 260 (2003), 3–13
- Chenyu Bai, Baohua Fu, L. Manivel, “On Fano complete intersections in rational homogeneous varieties”, Math. Z., 295:1-2 (2020), 289–308
- P. Belmans, Fanography
- J. Blanc, S. Lamy, “Weak Fano threefolds obtained by blowing-up a space curve and construction of Sarkisov links”, Proc. Lond. Math. Soc. (3), 105:5 (2012), 1047–1075
- I. Cheltsov, I. Krylov, J. Martinez Garcia, E. Shinder, “On maximally non-factorial nodal Fano threefolds”, Rev. Mat. Iberoam., 40:5 (2024), 1781–1798
- D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
- J. W. Cutrone, N. A. Marshburn, “Towards the classification of weak Fano threefolds with $rho = 2$”, Cent. Eur. J. Math., 11:9 (2013), 1552–1576
- O. Debarre, A. Iliev, L. Manivel, “On nodal prime Fano threefolds of degree 10”, Sci. China Math., 54:8 (2011), 1591–1609
- O. Debarre, A. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76
- D. Eisenbud, J. Harris, “On varieties of minimal degree (a centennial account)”, Algebraic geometry, Bowdoin, 1985, Part 1 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 3–13
- R. Friedman, “On threefolds with trivial canonical bundle”, Complex geometry and Lie theory (Sundance, UT, 1989), Proc. Sympos. Pure Math., 53, Amer. Math. Soc., Providence, RI, 1991, 103–134
- T. Fujita, “On the structure of polarized varieties with $Delta$-genera zero”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 103–115
- L. Gruson, R. Lazarsfeld, C. Peskine, “On a theorem of Castelnuovo, and the equations defining space curves”, Invent. Math., 72:3 (1983), 491–506
- В. А. Исковских, “Трехмерные многообразия Фано. I”, Изв. АН СССР. Сер. матем., 41:3 (1977), 516–562
- В. А. Исковских, “Трехмерные многообразия Фано. II”, Изв. АН СССР. Сер. матем., 42:3 (1978), 506–549
- В. А. Исковских, “Антиканонические модели трехмерных алгебраических многообразий”, Итоги науки и техн. Сер. Соврем. пробл. мат., 12 (1979), 59–157, ВИНИТИ, М.
- V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247
- P. Jahnke, Th. Peternell, and I. Radloff, “Threefolds with big and nef anticanonical bundles. II”, Cent. Eur. J. Math., 9:3 (2011), 449–488
- P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432
- P. Jahnke, I. Radloff, “Terminal Fano threefolds and their smoothings”, Math. Z., 269:3-4 (2011), 1129–1136
- Y. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163
- S. L. Kleiman, “The Picard scheme”, Fundamental algebraic geometry, Math. Surveys Monogr., 123, Amer. Math. Soc., Providence, RI, 2005, 235–321
- S. Kobayashi, T. Ochiai, “Characterizations of complex projective spaces and hyperquadrics”, J. Math. Kyoto Univ., 13 (1973), 31–47
- J. Kollar, “Flops”, Nagoya Math. J., 113 (1989), 15–36
- J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998
- А. Г. Кузнецов, “О линейных сечениях спинорного 10-мерного многообразия. I”, Изв. РАН. Сер. матем., 82:4 (2018), 53–114
- A. Kuznetsov, “Küchle fivefolds of type c5”, Math. Z., 284:3-4 (2016), 1245–1278
- A. Kuznetsov, A. Perry, “Derived categories of Gushel–Mukai varieties”, Compos. Math., 154:7 (2018), 1362–1406
- A. G. Kuznetsov, Yu. G. Prokhorov, “On higher-dimensional del Pezzo varieties”, Изв. РАН. Сер. матем., 87:3 (2023), 75–148
- A. Kuznetsov, Yu. Prokhorov, “Rationality of Mukai varieties over non-closed fields”, Rationality of varieties, Progr. Math., 342, Birkhäuser/Springer, Cham, 2021, 249–290
- A. G. Kuznetsov, Yu. G. Prokhorov, C. A. Shramov, “Hilbert schemes of lines and conics and automorphism groups of Fano threefolds”, Jpn. J. Math., 13:1 (2018), 109–185
- A. Kuznetsov, E. Shinder, “Derived categories of Fano threefolds and degenerations”, Invent. math., 239 (2025), 377–430
- S. Mori, “On a generalization of complete intersections”, J. Math. Kyoto Univ., 15:3 (1975), 619–646
- S. Mori, “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math. (2), 116:1 (1982), 133–176
- S. Mori, S. Mukai, “Classifications of Fano $3$-folds with $B_2ge 2$. I”, Algebraic and topological theories (Kinosaki, 1984), Kinokuniya Co. Ltd., Tokyo, 1986, 496–545
- S. Mori, S. Mukai, “On Fano $3$-folds with $B_2geqslant 2$”, Algebraic varieties and analytic varieties, Tokyo, 1981, Adv. Stud. Pure Math., 1, North-Holland Publishing Co., Amsterdam, 1983, 101–129
- S. Mori, S. Mukai, “Classification of Fano 3-folds with $B_2geqslant 2$”, Manuscripta Math., 36:2 (1981/82), 147–162
- S. Mukai, “Fano $3$-folds”, Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, 255–263
- S. Mukai, “Curves and symmetric spaces. III: BN-special vs. 1-PS degeneration”, Proc. Indian Acad. Sci. Math. Sci., 132:2 (2022), 57, 9 pp.
- M. Nagata, “On rational surfaces. I. Irreducible curves of arithmetic genus $0$ or $1$”, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 32:3 (1960), 351–370
- Y. Namikawa, “Smoothing Fano $3$-folds”, J. Algebraic Geom., 6:2 (1997), 307–324
- G. Ottaviani, “Spinor bundles on quadrics”, Trans. Amer. Math. Soc., 307:1 (1988), 301–316
- S. A. Papadakis, M. Reid, “Kustin–Miller unprojection without complexes”, J. Algebraic Geom., 13:3 (2004), 563–577
- Ю. Г. Прохоров, “O трехмерных $G$-многообразиях Фано”, Изв. РАН. Сер. матем., 79:4 (2015), 159–174
- Ю. Г. Прохоров, “Особые многообразия Фано рода 12”, Матем. сб., 207:7 (2016), 101–130
- Ю. Г. Прохоров, “О числе особых точек трехмерных терминальных факториальных многообразий Фано”, Матем. заметки, 101:6 (2017), 949–954
- Ю. Г. Прохоров, “Рациональность трехмерных многообразий Фано с терминальными горенштейновыми особенностями. I”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 230–253
- Yu. Prokhorov, “Rationality of Fano threefolds with terminal Gorenstein singularities. II”, Rend. Circ. Mat. Palermo (2), 72:3 (2022), 1797–1821
- В. В. Пржиялковский, И. А. Чельцов, К. А. Шрамов, “Гиперэллиптические и тригональные трехмерные многообразия Фано”, Изв. РАН. Сер. матем., 69:2 (2005), 145–204
- S. Rams, “Defect and Hodge numbers of hypersurfaces”, Adv. Geom., 8:2 (2008), 257–288
- M. Reid, “Canonical 3-folds”, Journees de geometrie algebrique (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, Md., 1980, 273–310
- M. Reid, “Minimal models of canonical $3$-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland Publishing Co., Amsterdam, 1983, 131–180
- M. Reid, “Nonnormal del Pezzo surfaces”, Publ. Res. Inst. Math. Sci., 30:5 (1994), 695–727
- B. Saint-Donat, “Projective models of $K-3$ surfaces”, Amer. J. Math., 96:4 (1974), 602–639
- Kil-Ho Shin, “$3$-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12:2 (1989), 375–385
- The Stacks project authors, The stacks project
- K. Takeuchi, “Weak Fano threefolds with del Pezzo fibration”, Eur. J. Math., 8:3 (2022), 1225–1290
- K. Yasutake, “On the classification of rank 2 almost Fano bundles on projective space”, Adv. Geom., 12:2 (2012), 353–363
Arquivos suplementares
