Convergence to stationary non-equilibrium states for Klein–Gordon equations
- 作者: Dudnikova T.V.1
 - 
							隶属关系: 
							
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
 
 - 期: 卷 85, 编号 5 (2021)
 - 页面: 110-131
 - 栏目: Articles
 - URL: https://bakhtiniada.ru/1607-0046/article/view/142274
 - DOI: https://doi.org/10.4213/im9044
 - ID: 142274
 
如何引用文章
详细
作者简介
Tatiana Dudnikova
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
														Email: dudnik@elsite.ru
				                					                																			                								Doctor of physico-mathematical sciences, Associate professor				                								 						
参考
- F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier law: a challenge to theorists”, Mathematical physics 2000, Imp. Coll. Press, London, 2000, 128–150
 - H. Spohn, J. L. Lebowitz, “Stationary non-equilibrium states of infinite harmonic systems”, Comm. Math. Phys., 54:2 (1977), 97–120
 - J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Comm. Math. Phys., 201:3 (1999), 657–697
 - S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Phys. Rep., 377:1 (2003), 1–80
 - Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Phys., 921, ed. S. Lepri, Springer, Cham, 2016, xi+411 pp.
 - C. Boldrighini, A. Pellegrinotti, L. Triolo, “Convergence to stationary states for infinite harmonic systems”, J. Statist. Phys., 30:1 (1983), 123–155
 - Т. В. Дудникова, А. И. Комеч, “О двухтемпературной задаче для уравнения Клейна–Гордона”, Теория вероятн. и ее примен., 50:4 (2005), 675–710
 - T. V. Dudnikova, “Convergence to stationary states and energy current for infinite harmonic crystals”, Russ. J. Math. Phys., 26:4 (2019), 428–453
 - T. V. Dudnikova, A. I. Komech, E. A. Kopylova, Yu. M. Suhov, “On convergence to equilibrium distribution. I. The Klein–Gordon equation with mixing”, Comm. Math. Phys., 225:1 (2002), 1–32
 - Б. Р. Вайнберг, “Поведение при больших временах решений уравнения Клейна–Гордона”, Тр. ММО, 30, Изд-во Моск. ун-та, М., 1974, 139–158
 - Е. А. Копылова, “Стабилизация статистических решений уравнения Клейна–Гордона”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1986, № 2, 92–95
 - В. П. Михайлов, Дифференциальные уравнения в частных производных, Наука, М., 1976, 391 с.
 - Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 3, Псевдодифференциальные операторы, Мир, М., 1987, 696 с.
 - И. А. Ибрагимов, Ю. В. Линник, Независимые и стационарно связанные величины, Наука, М., 1965, 524 с.
 - И. П. Корнфельд, Я. Г. Синай, С. В. Фомин, Эргодическая теория, Наука, М., 1980, 384 с.
 - T. V. Dudnikova, A. I. Komech, H. Spohn, “On a two-temperature problem for wave equation”, Markov Process. Related Fields, 8:1 (2002), 43–80
 - И. М. Гельфанд, Н. Я. Виленкин, Некоторые применения гармонического анализа. Оснащенные гильбертовы пространства, Обобщенные функции, 4, Физматлит, М., 1961, 472 с.
 - C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math., 105, Cambridge Univ. Press, Cambridge, 1993, x+237 pp.
 - М. И. Вишик, А. В. Фурсиков, Математические задачи статистической гидромеханики, Наука, М., 1980, 440 с.
 - V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp.
 
补充文件
				
			
						
						
					
						
						
				
